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Abstract

Monitoring unused IP address space by using network telescopes provides a favourable

environment for researchers to study and detect malware, worms, denial of service and

scanning activities. Research in the �eld of network telescopes has progressed over the

past decade resulting in the development of an increased number of overlapping datasets.

Rhodes University's network of telescope sensors has continued to grow with additional

network telescopes being brought online. At the time of writing, Rhodes University has

a distributed network of �ve relatively small /24 network telescopes.

With �ve network telescope sensors, this research focuses on comparative and correlation

analysis of tra�c activity across the network of telescope sensors. To aid summarisa-

tion and visualisation techniques, time series' representing time-based tra�c activity, are

constructed.

By employing an iterative experimental process of captured tra�c, two natural categories

of the �ve network telescopes are presented. Using the cross- and auto-correlation meth-

ods of time series analysis, moderate correlation of tra�c activity was achieved between

telescope sensors in each category. Weak to moderate correlation was calculated when

comparing category A and category B network telescopes' datasets. Results were sig-

ni�cantly improved by studying TCP tra�c separately. Moderate to strong correlation

coe�cients in each category were calculated when using TCP tra�c only. UDP tra�c

analysis showed weaker correlation between sensors, however the uniformity of ICMP

tra�c showed correlation of tra�c activity across all sensors. The results con�rmed the

visual observation of tra�c relativity in telescope sensors within the same category and

quantitatively analysed the correlation of network telescopes' tra�c activity.
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Chapter 1

Introduction

Research in the area of network telescopes has continued to gain prominence in the in-

formation security �eld. The reason for the growing interest in the �eld is partially

attributed to the changing threat landscape caused by an increase in self-propagating

malicious worms. The speed at which these worms are able to traverse the Internet is

staggering and the damages they cause costs of their e�ects can run into billions of dol-

lars. For example, the Code-Red worm infected 359,000 hosts in less than 14 hours and

the cost of its impact was reported in excess of $2.6 billion in 2011 terms [35]. With the

rapid and devastating impact of self-propagating malware, the need to monitor remote

security events by using network telescopes as a �rst point of detection is well founded.

Network telescopes have gained prominence and �lled the void left by traditional intrusion

detection systems since they allow researchers to monitor unused address space that con-

tains no legitimate tra�c. This means that monitored tra�c is unwanted and potentially

malicious. Furthermore, this proves to be advantageous as it means that researchers and

information security experts are not required to overcome the challenge of distinguishing

between legitimate and illegitimate tra�c.

A network telescope is a monitoring system that passively captures inbound network traf-

�c. In the past decade, by using network telescopes to monitor unexpected tra�c �ow,

researchers were able to identify anomalies in network tra�c such as denial-of-service

attacks [34] and to study various malicious worm outbreaks [33] [45]. The network tele-

scope's ability to detect random remote events is intrinsically limited by the lens size

(monitored address space). Without access to larger network telescopes, it has been

proven that relatively small telescope sensors are capable of observing malicious events

[14]. By having number of distributed telescopes, researchers are able to capture multi-

ple IP address spaces, consequently increasing the total space monitored. With distinct

1
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distributed network telescopes, the question of similarity in tra�c activity becomes per-

tinent. Similarities of network tra�c monitored from distinct network telescopes is a

question that has been explored by Rhodes University researchers [18].

1.1 Problem Statement

Organisations such as CAIDA1 (Cooperative Association for Internet Data Analysis), who

have multiple distributed network telescopes to monitor tra�c anomalies on a global scale,

have contributed to the growing body of network telescope research. Since 2005 in South

Africa, Rhodes University has been collecting data for analysis on relatively small (/242)

network telescopes [18]. In 2009, another network telescope with a /24 address space

was launched at Rhodes. Subsequent to this, three additional /24 telescopes have been

launched adding to a distributed network of �ve telescopes thereby providing multiple

sensors for analysis.

With multiple sensors available, researchers have access to increased volumes of concur-

rent data points or datasets. Increased concurrent datasets decreases the time to detect

remote network events [31]. Furthermore, the increased datasets also improve the network

telescope's resolution or ability to detect events. This is due to the inherent limitation in

network telescope research given that researchers are only able to monitor a portion of

the entire address space.

IP address space is increasingly becoming scarce as more devices demand allocation of IP

addresses [16]. This imposes a limitation of having large multiple /8 network telescopes,

with extensive amount of IP addresses, used purely for monitoring Internet background

radiation. In this regard, using smaller distributed network telescopes with large logi-

cal distance3 [20] provides researchers with an increased capability without necessarily

requiring access to larger network telescopes.

When using distributed network telescopes to study background radiation, it is important

to understand the relativity of tra�c activity across the network of telescopes as well

as the underlying variables responsible for this activity. Researchers have used various

visualisation techniques to show the relation of network telescope activity across multiple

network telescope sensors without quantitatively assessing a correlation between di�erent

1http://www.caida.org
2IP addresses that share the �rst 24 bits in common and often referred to as `Class C' network [28].
3The logical distance is the numeric di�erence between two IP addresses represented numerically.
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network telescope sensors. It is challenging to quantify the degree of tra�c relativity

between telescopes without numeric correlation values.

1.2 Research Objectives and Goals

With the current extended network of telescopes, the objectives of the project are to: (1)

comparatively analyse tra�c observed across �ve distinct network telescope sensors and

(2) investigate the correlation of tra�c activity across the di�erent network telescopes'

sensors. By determining the correlation across multiple network telescope sensors, the

research outcomes would provide greater con�dence in forecasting or modelling typical

network background radiation.

Therefore the two overarching goals extracted from the objectives above are:

• To comparatively analyse similarities of tra�c observed across the network telescope

sensors:

� Determine the degree to which one telescope sensor's tra�c is similar to an-

other.

� Investigate the relationship (if any) and gather insights as to what causes �uctu-

ations or deviations to the relationship between the network telescopes' tra�c.

� Comparatively analyse the di�erent tra�c types and their contributions to

�uctuations or changes in relativity of tra�c.

• To quantitatively analyse the correlation of periodic tra�c activity across all sensors:

� Apart from graphical techniques as representation of tra�c activity, assess

quantitatively, the correlation of tra�c activity across �ve network telescopes

combination.

� Quantitatively examine whether or not there are repeated periodic patterns of

tra�c in order to determine if tra�c observed over a period is uniform or has

repeated cycles.
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1.3 Scope

The primary focus of the research project is on network telescope tra�c analysis. In this

regard, the researcher abstracts away from underlying mechanisms of building network

telescopes. The approach is suitable since Rhodes University and other institutions have

previously conducted extensive research in setting up and con�guring network telescopes'

architecture [9] [18] [31].

The research project focuses on �ve datasets, which have been obtained from respective

distinct network telescope sensors on Rhodes University's network. The �ve datasets were

generated from IPv4 network telescopes. Traditional network telescopes, similar to the

ones under investigation, are passive since they do not respond to requests to establish

connections and simply capture tra�c arriving at the network. As no connections are

established, the research only focuses on packet header information to infer remote activity

without raw packet analysis. Furthermore, packet header information has already been

processed into Rhodes University's relational database infrastructure. To this end, the

hurdle of processing raw data from telescopes to relational databases is not included in

the scope of the project.

1.4 Methodology

To achieve the goals discussed above, the primary methodology will be to conduct in-

cremental and iterative experimental work, analysing datasets and discussing observed

trends that are being monitored. The research project will be quantitative and focus on

categorising and synthesizing large volumes of data. The methodology adopted will be

to extract the underlying variables in order to investigate and understand the dominant

variables that are responsible for �uctuations in correlation analysis.

The �rst approach for the research project will be to fully analyse and understand the �ve

datasets that are available; this includes building a pro�le of each dataset to understand

the outlay of the data. The second approach will examine the datasets' characteristics

and make use of summarisation and basic statistics to establish whether there is relativity

across the �ve network telescopes.

Having studied the relativity of tra�c using summarisation, the research will proceed to

conduct a thorough correlation analysis of the tra�c generated by the datasets. Statistical
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correlation analysis will require the construction of variables that will model the tra�c

observed over a period.

1.5 Document Structure

The remaining chapters of this document have been structured as follows:

• Chapter 2: highlights the background information relevant to the area of network

telescope area. The chapter surveys and analyses existing research on tra�c analy-

sis. In related work, the chapter indicates the gaps that previous research projects

have not adequately addressed as related to this project's objectives. The chapter

discusses the use of distributed network telescopes, summarisation and basic tra�c

statistical analysis techniques and advanced correlation techniques as part of a time

series analysis.

• Chapter 3: brie�y discusses the network telescope infrastructure with a concise de-

scription of each network telescope node used on the research project. An overview

of each dataset is discussed. The tools used to conduct the research and the advan-

tages of the platforms selected are also examined.

• Chapter 4: focuses on a comparative analysis conducted of the �ve network tele-

scopes datasets. The chapter implements summarisation and basic statistical tech-

niques as part of tra�c analysis.

• Chapter 5: examines the implementation of advanced correlation techniques in

comparing the tra�c activity of network telescopes.

• Chapter 6: concludes the research project and revisits the project's objectives. In

concluding, the chapter also discusses potential future work and extensions to this

project.



Chapter 2

Literature Survey

Network telescopes occupy a range of unused network address space (so called darknets

since, seemingly, there is nothing within these networks) [11]. Since the address space is

unused, normal tra�c is removed therefore making all tra�c captured unwanted, poten-

tially harmful or simply malicious.

Network telescopes assist information security researchers in providing an early warning

system for worms, denial-of-service and various malware activities [31]. Due to the speed

at which worm activities can infect and propagate through the greater network, having

a network telescope to monitor unusual tra�c is useful as a �rst point of detection. For

example, an analysis of network telescope tra�c allows researchers and security experts

to understand the environment and consequently develop software that can adapt to the

environment.

Network telescopes generate large quantities of data. For example, between 2005 and 2009

a relatively small /241 network telescope captured over 40 million packets of data [18]. In

order to analyse these large datasets meaningfully, there are a number of techniques that

researchers use such as summarisation, correlation analysis and visualisation.

Since the tra�c being monitored is captured with a time stamp, time series' can be

generated to model tra�c activity over a period of time. As more overlapping network

telescope datasets are being collected, the correlation analysis of tra�c activity across

these datasets requires the use of more advanced statistical analysis of time series' such

as the cross-correlation and auto-correlation methods.

1IPv4 address space with 28(256) IP addresses

6



2.1. NETWORK TELESCOPE BACKGROUND 7

This chapter begins with discussion of the background of network telescopes including

examples of work in analysing malicious activity. The discussion proceeds, providing a

motivation for the use of network telescopes and the signi�cance of having distributed

network telescope sensors. Summarisation and correlation are examined as well as related

research around tra�c relativity. Building on basic statistical analysis through summari-

sation, a discussion around the use of time series' in conducting correlation analysis is

provided. The chapter concludes by discussing the limitations of passive monitoring.

2.1 Network Telescope Background

Network telescopes are used to monitor tra�c across unused IP address space. Since

the IP address space of the telescope sensors are unallocated, no legitimate tra�c should

be expected [31]. Considering that network telescopes monitor unexpected tra�c, they

provide a useful mechanism to observe remote security events from malicious activities

such as worms and denial of service attacks.

Network telescopes are useful for providing early warning and detection of security events.

For example, by monitoring illegitimate tra�c and using anomaly detection methods,

an early detection system for worms can be developed. In this instance, to monitor

illegitimate tra�c, a Kalman �lter2 model was used to identify the presence of worms in

their early stages [55].

Research using network telescopes is also useful in studying the propagation of malicious

worms. For example, a network telescope was used to understand how the Slammer worm

managed to achieve rapid growth [33]. Slammer, a computer worm that exploited bu�er

over�ows of Microsoft SQL servers, managed to reach 90% of vulnerable hosts within

ten minutes [33]. The speed of scanning rates of Slammer was estimated using network

telescopes. Additionally, using network telescopes, researchers were able to detect several

of Slammer's �aws with the random number generator that limited the worm's potential

impact.

Telescopes can also be used to study denial-of-service attacks. Research has been con-

ducted to infer information about the prevalence of denial-of-service attacks using backscat-

ter analysis . By using a /8 network telescope, researchers were able to observe more than

12,000 denial-of-service attacks in over 5,000 distinct targets [34].

2Kalman �lter detects the presence of worms by detecting the trend of tra�c
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Aside from the examples listed above, network telescopes have been used to study the

spread of the Code-Red worm [35]. The Code-Red worm exploited a bu�er over�ow

of Microsoft's IIS web servers and caused a widespread outbreak in 2011. Similarly,

using network telescopes, researchers studied the Witty worm, which a�ected the bu�er

over�ow vulnerability of several Internet Security System products such as RealSecure

and BlackICE [45]. The detection of malicious remote activity is possible because network

telescopes o�er researchers the capability to overcome the challenge of collecting global

information about worms and provide a signi�cant amount of tra�c activity information.

For example, a /8 telescope, which the Cooperative Association for Internet Data Analysis

(CAIDA) operates, e�ectively contains 1/256 of all IPv4 addresses [45]. This means that,

if a worm propagation is random and unbiased, CAIDA's network telescope would receive

roughly one out of every 256 packets sent.

Network telescopes are passive, they do not complete a 3-way TCP handshake to establish

a connection and therefore cannot receive TCP payloads. Network telescopes can conse-

quently be used to monitor activity of Internet background radiation. Tra�c arriving at

a network telescope can be classi�ed in one of the following three categories [18]:

• Backscatter - tra�c generated from IP addresses within the telescope's range being

used for spoo�ng elsewhere. For example, tra�c (i.e. TCP handshake messages)

generated by a host responding to a spoofed host wanting to establish a TCP con-

nection.

• Miscon�guration - tra�c likely emanating from miscon�guration of hosts.

• Aggressive - potentially hostile tra�c generated through scanning activity, worms

and malware.

2.2 Motivation for the Use of Network Telescopes

Research in network telescope tra�c has progressed over the decade since the initial

work produced by CAIDA in 2002 [31]. In recent years, network telescope research has

increased in its prominence among researchers. The increased focus on network telescope

tra�c is due to the increase in botnet3-related activities such as the Con�cker worm [4].

Apart from the ability of network telescopes to gather global information about worms

3Compromised machines used to send out spam email messages, spread viruses, attack computers and
servers - http://www.microsoft.com/en-gb/security/resources/botnet-whatis.aspx
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discussed in Section 2.1, there are a number of reasons for the increased interest displayed

by security researchers:

• Using production network tra�c requires researchers to separate illegitimate tra�c

from useful and live production tra�c [18]. Since network telescope data is un-

solicited, researchers can assume that such tra�c is illegitimate and is therefore

potentially harmful. Using production data could also have negative impact on the

functioning of organisations. Furthermore, it is cumbersome to gather information

at a global scale using production data.

• An increase in computer processing power aids researchers in processing and classi-

fying rising volumes of data. For example, Rhodes University researchers developed

a GPU accelerated packet classi�cation tool to perform fast and accurate classi�ca-

tion of packets [36]. The design of a fast classi�er was possible due to an accelerated

graphic processing unit as well as the leveraging of parallel processing capability

available on GPU's which in turn was optimised for parallel classi�cation of pack-

ets.

• Added to the increasing processing power is the ability to make sense of large

datasets through various visualisation techniques. With visualisation it is easier

to view patterns and trends from network packet activity. The InetVis (Internet Vi-

sualisation) tool was designed to perform various visual analyses of the network tele-

scope tra�c [50]. The InetVis system allowed researchers to use three dimensional

plots to display scanning activities thus providing additional insights into scanning

activity across di�erent types of tra�c. Additionally, researchers at Rhodes Univer-

sity developed a tool to map large IP tra�c by using Hilbert Curve fractal mapping

[17]. The tool aided analysis of tra�c as it could compare data from multiple net-

work telescopes. This is partially achieved by the tool's ability to show sequential

relationship between nodes on the produced plot.

2.3 Network Telescope's Size

Before discussing the signi�cance of a network telescope's size in detecting events, ad-

dressing terminology is introduced. Internet Protocol version 4 (IPv4) addressing scheme

caters for a 32 bit address to identify a host on the network [28]. Therefore an IPv4

address scheme has a potential pool of 232 addresses. Furthermore, originally addresses
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were categorised into classes to describe the size of networks. A `Class A' network has the

�rst 8 bits used by the Network ID and the remaining 24 available for hosts (224 di�erent

addresses). Similarly, a `Class B' network has the �rst 16 bits occupied by the Network

ID and 16 bits remaining for hosts (216 di�erent addresses). The `Class C' network has

the �rst 24 bits occupied by the Network ID and the remaining 8 bits available for hosts

(28 di�erent addresses). `Class A', `Class B' and `Class C' can also be written as /8, /16

or /24 respectively. The latter notation is preferred throughout the paper since it allows

one to discern quickly the number of bits used by the Network ID.

Network telescope size (i.e. the address range of the telescope or lens size) is important in

the telescope's ability to observe or detect network events. Telescope size will a�ect the

telescope's accuracy and the speed at which it can observe events. There is a relationship

between the network telescope's size and its ability to detect events accurately and rapidly.

It has been shown that a /1 network telescope is more than twice as good as a /2 given

that a /2 takes 2.41 times longer to detect a packet at the same con�dence level [31]. The

results also showed that the relationship does not scale linearly. In summary, the results

can be attributed to the impact of higher resolution that larger network telescopes are

able to o�er.

Nevertheless, even when using a relatively small /24 network telescope, researchers are

still able to observe malware activity as well as perform classi�cation of malware gener-

ated tra�c [14]. Section 2.2 provides a few examples of research conducted at Rhodes

University, which has been primarily based on relatively small /24 network telescopes.

To illustrate the probability of /8 and /24 network telescopes' ability to observe network

events, the application of probability theory is considered. If /y represents the network

telescope size, then the probability of monitoring a target, which is chosen randomly by

a host, is generally given by [31]:

p(y) =
1

2y
(2.1)

By applying probability theory to di�erent network sensors' size, one is able to see that

/24 telescope would have a lower probability of observing events relative to a larger /8

network telescope sensor.

p(8) =
1

28
=

1

256
(2.2)

p(24) =
1

224
=

1

16, 777, 216
(2.3)
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It is also important to note that larger network telescopes have a higher probability of

detecting events since that an event will occur for a limited time period [31]. The duration

of an event therefore plays an important role in terms of whether or not a telescope can

detect an event.

2.4 A Case for Distributed Network Telescopes

Network telescopes are limited by their lens size. A reason for this is that a network

telescope only monitoring a section of the entire network address range. Without access

to a large /8 network telescope, a distributed architecture with multiple sensors improves

the ability of smaller network telescopes to detect events quickly.

Multiple distributed network telescopes allow researchers to capture multiple address

blocks on the entire address range thereby increasing total address space being monitored.

The bene�t derived from this is that, by distributing /24 network telescopes, there is a

decrease in detection time rate and an improvement in the network telescope's resolution

(i.e. ability to detect events) [31]. Additionally, in a case where the network telescope's

address blocks are logically spread widely, researchers are also able to minimize targeting

bias in monitoring events. There are di�erences in the distributed model adopted for

sensors. In one extreme, distributed network telescopes can take form of a few large

contiguous telescope sensors. For example, relatively large /16 telescope sensors were

used to develop iSink (Internet sink) by researchers at the University of Wisconsin [54].

In another extreme, distributed network telescopes can take the form of large peer-to-

peer networks covering a wide area, however the network telescopes only monitor small

to individual IP addresses [43]. Lastly, by distributing network telescopes, resources are

spread across di�erent telescopes thereby increasing the network capacity in monitoring

events better.

Notwithstanding the advantages of using distributed network telescopes, there are correla-

tion challenges introduced when conducting a comparative analysis of distributed network

telescope tra�c. Furthermore, although there are an increased number of network tele-

scopes capturing datasets, the anonymisation of sensors is another challenge posed to

researchers. These challenges are discussed in detail below.
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2.4.1 Correlation Challenges

Using distributed network telescopes introduces an additional challenge of ensuring that

the timing of network telescopes' clocks are synchronised. The discussion of correlation

becomes important particularly when trying to pinpoint when an event started. The

reason for this is that the �rst packet of an event that is detected by telescope is not

necessarily the �rst packet emitted by the malicious host. The case is the same for the

last packet. Using probability statistics, it has been shown that a /8 network telescope

has 99% con�dence that events happened no earlier than two minutes before the �rst

observation is made in the telescope [31]. It is important to appreciate that the results

achieved on a /8 network telescope would not directly translate to a /24 network telescope.

In this regard, the question of the correlation of events on smaller telescopes becomes more

pertinent.

2.4.2 Sharing Network Telescope Data

The sharing of a telescope's data that is collected with various sensors can prove to be

a challenge given the sensitivity of ensuring that portions of the data are preserved. For

example, organisations, like CAIDA, have put in place IP anonimisations techniques such

as pre�x-preserving address anonymisation to protect personally identifying information

[32]. The reason behind this pre�x-preservation process, apart from political and economic

constraints, is simply to protect the integrity of the network telescope in order to avoid

potential directed attacks, which would compromise the integrity of the sensor.

2.5 Summarisation and Correlation Analysis

In an e�ort to manage and understand the immense amount of data that network tele-

scopes generate, researchers use various methods to classify and perform data analysis.

There are two main pathways for the analysis of data: summarisation can be used in

developing or augmenting concepts and correlation for enhancing understanding and dis-

covering of relations in data [30]. The main goal is to categorise data in a manner that

would allow humans to infer knowledge or reach conclusions. Apart from summarisa-

tion and correlation, visualisation is simply a technique of presenting results clearly and

meaningfully.
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2.5.1 Summarisation

Summarisation is responsible for �nding patterns through basic techniques such as totals,

centrality and the spread of data [30]. For centrality, measures such as mean, median and

mode are employed. While, for the spread, the variance and standard deviation can be

used. A brief description of these concepts is available in Appendix A. Apart from the

basic summarisation techniques, there are more advanced methods that can be used. An

example of this is cluster analysis; where data points that are similar to each other are

grouped into clusters [53].

2.5.2 Understanding Correlation Analysis

Two factors are correlated when a co-occurrence of a pattern in the values is observed

[30]. For example, a multiple of one variable relative to another. Therefore, correlation

can be used for both prediction or modelling. Correlation studies of network telescope

tra�c activity will be useful in predicting network tra�c layout in other non-captured

network address ranges. Furthermore, correlation studies will allow researchers to have

a deeper understanding of background radiation activity (ebbs and �ows) and be able to

infer greater knowledge.

2.6 A Case for Correlation in Network Telescope Tra�c

The correlation of network tra�c activity between multiple sensors has been of interest to

researchers at Rhodes University, particularly where the network telescope's IP address

assignments are not adjacent to each other [20]. In other words, where network telescopes

have a logical distance between each other. At Rhodes University, detailed research in this

area has not been possible in the past due to the lack of overlapping datasets from di�erent

sensors [18]. However this constraint was lifted with the introduction of new telescopes

resulting in a total of �ve network telescopes. The datasets used in this research, collected

from the �ve network telescopes, show the following positive characteristics:

• Consistent address range size: the network telescope lens (i.e. the size of IP ad-

dress range of the network telescope) are all similar /24 networks. The /24 networks

have 8 bits available for IP addresses for hosts within the network and therefore mon-

itor 256 IP addresses. This is relatively small compared to a /8 network telescope
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operated by CAIDA with 24 bits available for hosts' IP addresses within the net-

work. Therefore, with 24 bits available, the CAIDA network telescope monitors

16,777,216 IP addresses.

• Moderate logical distance: the telescopes are not logically located directly ad-

jacent to each other. This allows one to avoid location bias of attacks.

• Substantial dataset overlap period: all �ve network telescopes have been gath-

ering data since May 2011. Since the project's initiation, over a year's worth of

datasets were captured.

• Multiple datasets: the �ve datasets allow for multiple comparators with which

experiments can be conducted.

2.7 Related Research - Sensor Tra�c Relativity

As previously highlighted, comparative analysis for earlier studies was limited by the

number of available overlapping datasets. However, recently a paper was published looking

at �ve network telescope datasets [16]. This section explores the work done at Rhodes

University and also looks at other research on metrics and basic statistical analysis.

2.7.1 Monitoring Malicious Activity Across Five Sensors

Researchers have recently looked at malicious activity across �ve distinct network tele-

scopes [16]. The study, containing a 15-month period of observations, demonstrated

both the value of having a distributed network of telescopes sensors and the advantage

of analysing Internet background radiation across �ve network telescopes. Although no

detailed statistical analysis was conducted (detail analysis was beyond the scope of the

paper), graphical results of the study highlighted similarities of the tra�c observed across

the network telescopes. Research foregrounds the e�cient use of combining multiple

network telescopes in performing Internet background radiation analysis, thereby saving

valuable IP address space.
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2.7.2 Basic Statistical Analysis and Metrics

Due to the sheer size of data that is captured by network telescopes, researchers have

shown that data summarisation techniques can be used to reduce data into more con-

sumable sections by deriving basic statistical properties such as averages, medians and

deviations [7]. Using heuristics and summarisation, researchers were able to detect anoma-

lous activities and also identi�ed a number of malicious attacks such as Con�cker and dis-

tributed denial of service. Identi�cation of malicious activity was conducted by monitoring

the following: the rapid growth in packet count, which showed denial-of-service attacks;

changes in packet count rations of top ports, which highlighted presence of Con�cker; and

variations in packet sizes, which signi�ed the presence of W32.Rinbot4 [27].

Apart from statistical analysis of network telescopes' data, researchers have also imple-

mented statistical clustering in large networks to aggregate activity types of machines

in determining anomalous activity [25]. Machines were clustered into activity groups

based on similarities between their activity pro�les. Although researchers de�ned attacks

broadly to include information gathering exercises, by using 993 machines capturing data

over a month, a total of 27 source IP were determined as attackers.

Metrics allows researchers to derive a consistent way to compare datasets and pro�le net-

work telescopes. Research conducted has shown that it is possible to use standardised

metrics to compare datasets from di�erent network telescopes thereby enhancing infor-

mation sharing among researchers [19]. The metric-based approach allows researchers to

use metrics to conduct analysis without necessarily sharing source data. The research

conducted proposed that network telescope metrics could be broadly categorised in two

classes:

• Sensor Metrics: Con�guration details of network telescope such as lens size, opera-

tion mode (passive or with interaction with incoming packets) and meta-data

• Dataset Metrics: Overview of the dataset drawing common tra�c metrics (Top

host/network observed, destination ports, source ports and protocols)

To the best of the researcher's knowledge, most of the work done on the statistical analysis

of tra�c activity is mainly focused on single network telescopes. This can be partially

attributed to challenges in sharing datasets amongst researchers as there is a need to

conceal or protect personally identifying information to prevent poisoning the sensor.

4W32.Rinbot is a worm which exploited Windows Server Service vulnerability which allowed remote
code execution without authentication
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2.7.3 Handling Statistical Outliers

To conclude this section on related work, an overview of associated research on the han-

dling of statistical outliers is provided. This is essential as network telescope tra�c will

be susceptible to extreme values. For example, a form of packet �ooding as part of a

targeted denial of service would a�ect the packet count estimates (statistic). When con-

ducting a statistical analysis of data it is important to check for outliers (points of data

far outside the norm of a �gure) since they can lead to distortions of estimates such as

mean, standard deviation and variance [37]. The debate around whether or not to remove

outliers is beyond the scope of this paper; however, outliers can have adverse e�ects on

correlation measurements. To demonstrate the unfavourable e�ects of these outliers on

correlation, researchers have shown [37] (using a population of 23396 subjects with both

weak and strong correlated variables (r1 = −0.06) and (r2 = −0.46)) that cleaned cor-

relation were more accurate (closer to known population correlation). In the experiment

under discussion, researchers use a common method of three or more standard deviations

from the mean to clean the dataset, so values outside three or more standard deviations

were treated as outliers.

2.8 Time Series Analysis

Time series analysis is useful in understanding past events as well as predicting the future

[8]. In this regard, the application of most time series analysis is aimed at understanding

correlation and �tting models to data in an attempt to forecast future values or generate

simulations. Various metrics in economics, science and engineering generally observe

data (variables) such as: share price movements, price of commodities, Gross Domestic

Product (GDP) per year, exchange rates and weather patterns over a period of time.

Similarly, network telescope tra�c metrics also measure variables over a period of time

such as the daily/hourly packet count. Having variables measured sequentially over a

�xed time period allows for the creation of time series [8]. Time series analysis therefore

looks at trends, seasonal variations and, most signi�cantly, the correlation (relatedness)

of variables over a period of time.
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2.9 Advanced Statistical Analysis using Time Series

Section 2.7 explored work around the use of basic statistics and metrics in network tra�c

analysis. This section develops the discussion of using statistics in tra�c analysis further

by focusing on more advanced correlation statistical methods using time series'. Although

long-range and cross-correlation methods (to be introduced in this section) have been

implemented in other �elds, a literature survey show little implementation in the �eld of

tra�c analysis. This section will introduce the terminology and, in a case where a method

has been implemented to analyse repeating patterns, it also discusses the work that was

conducted.

To show long-range correlation of a time series, the auto-correlation function method can

be used [22]. Long-range correlation analysis tests for correlation of a time series with

itself in two di�erent time lags. This is done so that a test of whether or not a series

contains repeating patterns might be conducted. In order to compute the correlation of

two time series the cross-correlation method is used [8].

2.9.1 Auto-correlation Function

An auto-correlation function calculates the correlation of a series with its own values at

di�erent lagged times [8]. With a speci�ed maximum lag, the auto-correlation function

would calculate the correlation value of the time series at each consecutive lag until the

maximum lag is reached [49]. Correlation results would indicate whether there are periodic

patterns in di�erent time lags.

2.9.2 Cross-correlation Function

The simple cross-correlation method is used to quantify the relationship between time

series variables. Time series variables may be correlated serially or correlated with a

di�erent time lag [8]. The challenge with using the simple cross-correlation method is

that it does not cater for shifted series based on time lags. For instance, two time series

can be correlated with a lag between them. This is pertinent to network telescope research

since the lag could be due to a number of factors relating to network delays of events which

are based on the logical or physical distance of the network telescope. In this regard a

sample-shifted cross-correlation method is considered.
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2.9.3 Related Work using Cross-correlation Method

Understanding the types of information threats and attacks is important for modelling

tra�c distributions, which could be used to con�gure information security infrastructure.

A related body of work on network tra�c correlation analysis makes use of the cross-

correlation method to construct a joint distribution of tra�c models for dependent and

non-identical distributed tra�c �ows [52]. Researchers observed that due to dependency,

a joint distribution platform is best used to model the tra�c.

2.10 Limitations with Passive Monitoring

In closing the literature survey, the limitations of passive network telescopes in analysing

malicious tra�c are discussed.

The �rst limitation with using passive telescope sensors is that tra�c is captured passively

as discussed in Section 2.1. Since network telescopes simply capture packet information

and drop the packet without establishing a TCP connection, the implementation of pas-

sive monitoring does not consider the payload information of packets [16]. With this

constraint, researchers are unable to conduct payload analysis. However, with a signi�-

cant amount of tra�c information researchers can still infer knowledge about malicious

attacks, such as denial of service, with a high likelihood [34].

Another challenge is the deployment of IPv6. Although the deployment of the IPv6

Internet Protocol has been gradual, network telescope analysis will be a�ected by the

uptake of IPv6 protocol. The reason for this is that IPv6 has larger size of IP addresses

relative to IPv4 IP addresses and therefore it makes worm scans less e�ective or simply

infeasible [6]. With a typical /24 network, scanning tools only need to scan 256 addresses

to reveal vulnerabilities. On a conservative one second per scan, this would essentially

take less than �ve minutes. A typical IPv6 network will have 64 bits reserved for a host

address. Applying the conservative assumption above, this would mean that it would

take �ve billion years to complete a scan. Research on previously deployed IPv6 network

telescope sensors showed no tra�c observed [12] [16].

Although the large amounts of tra�c generated by network telescopes are not a limitation,

care should be taken when analysing large datasets. If large time intervals are used, it

can be di�cult to identify incidents due to dilution and interplay of other incidents [7].

Conversely, tiny time intervals require greater processing in order to observe incidents.
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2.11 Summary

In this chapter, a literature review of network telescopes was conducted. At the outset, the

literature survey focused on basic concepts to introduce the area of network telescopes. Be-

yond the introduction and explanation of terminology employed in the chapter, a number

of examples of the implementation of network telescope analyses were provided. Network

telescopes have been useful in monitoring and studying remote network events such as

worms; including Con�cker, Slammer, Code-Red, and Witty Worm. The literature survey

also demonstrated that network telescopes are useful in providing an early warning system

of malicious activity. By employing network telescopes, researchers are also able to infer

knowledge about denial-of-service attacks through conducting backscatter analysis.

Additional motivation for the use of network telescopes was also presented. The literature

review highlighted the advantages of using network telescopes since they only monitor

unexpected or illegitimate tra�c and researchers do not have to separate legitimate tra�c

from the datasets. Increased processing power allows for the processing of larger datasets

as well as enabling researchers to use visualisation techniques to present results accurately

and meaningfully.

The size of a network telescope is important in the sensor's ability to detecting events.

Using probability theory, the chapter highlights the di�erence between a /8 and /24's

probability of observing events. A motivation for using distributed network telescope

sensors as means to improve smaller sensors' ability to detect events is provided. Another

advantage of using distributed network telescopes is that researchers are able to avoid

targeting bias of events by distributing sensors widely in their logical location.

The chapter highlights summarisation techniques and correlation analysis as the two main

pathways of data analysis. A survey of work around basic statistical analysis and the use

of metrics was also provided. The researcher concludes that, even though there has been

previous work around metrics and basic statistical analysis, less work on correlation of

multiple sensors has been conducted mainly due to the lack of overlapping datasets in the

past.

As well as basic statistical analysis and the use of metrics, the chapter also introduced

advanced statistical analysis using time series. Terminology and method for auto- and

cross-correlation is discussed. The auto-correlation method is used in detecting repeating

patterns in a time series and the cross-correlation method tests for the correlation of two

time series.
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Having provided background literature, the next chapter focuses on the description and

overview of the datasets that have been gathered from the �ve network telescopes, as well

as the tools used to implement the research. Furthermore, the next chapter analyses the

logical and physical location of the telescope sensors in exploring similarities of network

telescope sensors.



Chapter 3

Datasets and Research Tools

Obtaining appropriate datasets for the research is imperative since third-party datasets

are usually anonymised to avoid disclosure of a network telescope's IP address space. The

need for multiple comparators is one of the fundamentals of the research project since

the study is comparative in nature and focuses on network telescopes' relativity across

multiple telescope sensors. Time series' can be employed to model network tra�c activity

on each sensor.

This chapter discusses details of the datasets, including how data is sourced and the

respective data collection methods. It is important to note that there has already been

extensive research undertaken at Rhodes University on network telescopes. In this regard,

the aim of this chapter is to provide a high-level overview of the network telescope's

setup and a brief background on the relational database used in this research. Detailed

information on the setup of network telescopes, collection of packets and processing of

raw packets can be obtained in various studies done at Rhodes University [16] [18] and

other research institutions such as Cymru [9] and CAIDA [31].

The focus of this research is on tra�c analysis and as a result, the detailed mechanisms

of building network telescopes are avoided. Abstraction from handling raw packet data is

made possible by the use of a relational database infrastructure with packet information

from di�erent sensors stored in one database. Having one database allows for rapid

development of queries and quick access. Additionally, the use of a relational database

allows the researcher to work with packet information through relational tables instead

of working directly with raw packet dumps. A statistical software package is required

to perform statistical analysis and to represent the �ndings graphically. Since network

telescope tra�c has been converted to a relational database, querying language is used to

21
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categorise and interpret tra�c. Finally, results obtained from the database are used to

conduct further analysis using a statistical package.

Understanding the location of the sensors (both physical or logically) is also important in

di�erentiating between network telescope sensors and the e�ect this may have on tra�c.

The logical location refers to where the IP address blocks used by the sensors are placed

relative to other IP address blocks. Even though the telescopes' sensors are physically

located in Africa they may not be logically similar. The chapter concludes by detailing

some of the di�erences and similarities that can be attributed to the physical and logical

location of network telescopes.

3.1 Data Source and Collection

Datasets for the research have been obtained from Rhodes University's distributed net-

work of telescope sensors. Rhodes University's research on network telescopes was ini-

tiated in 2005 [50] with the launch of a relatively small /24 network telescope sensor.

This was the inception of network telescope research at Rhodes University and there have

been subsequent telescope sensors added over the years. All network telescope sensors are

physically located in South Africa on the TENET1 network.

To conceal the network telescopes IP addresses, thereby avoiding potential poisoning of the

datasets, the researcher has adopted �ve aliases for the network telescopes. The number

represents the higher order IP pre�x of the network telescope sensor. To di�erentiate

multiple sensors within one IP pre�x (the �rst 8 bits of the IPv4 address), alphabetic

letters (�a�, �b� and �c�) are used. A brief description of each sensor is provided below:

• 196-a: Launched in August 2005 in the Eastern Cape. This was inception of network

telescope research at Rhodes University.

• 146-a: Secondary telescope introduced in August 2009 at Rhodes University.

• 155-a: Launched at the beginning of 2011. The telescope is located in Western

Cape.

• 196-b and 196-c: These are similar to 155-a in that both telescopes were launched

at the beginning of 2011. They were, however, placed on the 196 IP pre�x.
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Figure 3.1: Evolution of Rhodes University's network telescope datasets

Figure 3.1 shows the evolution of the datasets using all �ve network telescopes. The

timeline shows the network telescope's life span and the total amount of packets captured

with a selected cut-o� date of 20 May 2012. The cut-o� date was based on the latest

available datasets when the project was initiated. As of 20 May 2012, combined telescope

data amounted to 183 million packets. Telescope sensor 196-a is the oldest sensor and

has been online for over seven years at the time of writing. Sensor 146-a is the second

oldest with more than three years worth tra�c. Sensors 155-a, 196-b and 196-c are the

most recent with over a year's worth of tra�c captured.

3.1.1 Selection of Datasets

The �rst hurdle to overcome was to obtain multiple contiguous and overlapping datasets

across di�erent telescope sensors. The dataset needed to be contiguous to cater for the

construction of time series'. That is, there should not be prolonged periods where the

telescope was o�ine. It was expected, at an hourly time period, that datasets would

experience ad-hoc interruptions due to anomalous network interruptions such as outages

emanating from the service provider. However, at a daily time period, elongated outages

would render datasets as non-contiguous. The researcher made a conservative assumption

that, should a network telescope sensor not receive a packet for an entire hour, there is an

outage. Outages analysis will be explored in detail in the upcoming chapters. Although

there are advanced techniques to handle short periods of missing data through estimation

of the cross-correlation function [46], it is preferable to have continuous and clean datasets.

As shown in Figure 3.1, between 10 February 2011 and 20 May 2012 there were �ve over-

lapping telescope sensors online, representing over 464 days (15 months). It is preferable

1Tertiary Education and Research Network of South Africa, http://www.tenet.ac.za/
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to have a full year of datasets to cater for seasonal changes in activity across telescopes

sensors. In this regard, a full year of data collection between the 20th of May 2011 and

20th of May 2012 is selected. Except for 196-b, all network telescopes experienced no out-

ages lasting for a day or more. However, there were hourly outages that will be explored

in detail in Section 5.4. Between May 2011 and November 2011, sensor 196-b experienced

an interruption of 173 days. Interruptions were caused by the failure of a network in-

terface card [16]. Notwithstanding the six months of interruptions, the research project

makes use of a dataset from 196-b however, only for the period where it had been online

continuously. The reason for this is the high similarities observed between 196-a, 196-b

and 196-c (this will be discussed in detail in Chapter 4). To ensure that there is over-

lapping and common time period between the network telescopes, whenever comparative

analysis of 196-b is conducted only the six month period from November 2011 to May

2012 is considered.

3.1.2 Overview of Data Gathering

There has been extensive research conducted on the Rhodes network telescope datasets

in recent years (as discussed in Section 2.7). This section provides a high-level summary

of how data was captured on the network telescopes and then processed to the Post-

greSQL database. Readers are referred to [18] for detailed information on the database

con�gurations.

Tcpdump2 (a command-line packet analyser) is used for capturing packets. Files with

captured packets are then copied and archived for further analysis [20]. Raw PCAP �les

are then parsed to a relational database. Raw packet manipulation and analysis is out of

the scope of this project as data was already loaded onto the database. Therefore, the

research project focuses on the analysis of data stored in relational databases.

3.1.3 Packets Storage - Relational Database

Analysis is conducted on the datasets stored in a relational database. A description of the

relational database is provided in this sub-section. As indicated previously, a relational

database stores the tra�c information (or packet header information) of the telescope

sensor. Each network telescope sensor has a de�ned, separate relational database. Figure

2http://www.tcpdump.org/
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3.2 shows the Entity Relationship Diagram with table schema containing stored packet

information. Each database contained the same database schema (de�nition of tables,

constraints and indexes). This was advantageous in writing queries since similar querying

scripts could be executed on di�erent databases by simply changing the database con-

nection. Tables contain the following �elds (a de�nition of each �eld can be obtained in

Appendix B):

• The packets table contains packet header information. This information is obtained

from the IP (Internet Protocol) wrapper datagram.

• TCP, UDP and ICMP tables contain protocol-speci�c header information.

The major IP protocol tables (TCP, UDP and ICMP) were linked to the main packets

table with a foreign key constraint enforcing a relationship between the protocol tables

and the main packets table containing IP data. Every IP datagram would include in-

formation contained in the packets table however, depending on the data encapsulated

(TCP, UPD and ICMP data), additional information would be stored. The database

schema allows researchers to conduct individual protocol analysis since it o�ers �exibility

to query protocol-speci�c �elds.

3.2 Description of Datasets

As stated in Section 3.1.1, the range of data selected spans a year, from 20 May 2011 to 20

May 2012. During this period the total combined packets gathered from the �ve telescopes

under investigation were 74.3 million. This is equivalent to an average of 203,065 packets

per day. Figure 3.3 shows each network telescopes' contribution to the data that was

observed. Looking at each sensor packet count, the relative similarities of total counts

of 196-a, 196-b and 196-c are notable. These network telescopes form a natural category

of telescopes termed as �category A�. The lower total packet counts of 146-a and 155-a

also allow one to categorise these two network telescopes as �category B�. Further detailed

analysis to support the categorisation of telescopes is conducted in Section 3.2.1 and

Section 3.2.2. In brief, there are a number of factors that contribute to the di�erence in

packet counts between category A and category B such as high-order IP pre�x, physical
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Figure 3.2: Entity relationship diagram of database schema

and logical location and the in�uence of the Con�cker worm. Sensor 196-b has less packet

counts compared to other category A telescopes (196-a and 196-c) this is due to the down

time caused by a failed network interface card - the 173 days down time occurred between

the 20 May 2011 and 9 November 2011 [16]. With only six months considered, between

November 2011 and May 2012, 196-b has roughly 50% of packets that have been observed

in other category A telescope sensors and, as such, it is considered to be similar to them.

3.2.1 Logical Distance Analysis

Although category A network sensors are part of the same IP pre�x (196/8), the IP address

ranges of each telescope sensors are non-continuous as there is moderate logical distance

between the sensors IP ranges. The logical distance between two IP addresses is de�ned as

the numerical di�erence between the two addresses [20]. Therefore, to calculate the logical

distance between sensors the researcher calculates the numerical di�erences between the

IP addresses representing the sensors.

Logical distance between network telescopes is important as it allows the researcher to test

correlation between network telescopes that either are logically far apart or have address
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Figure 3.3: Packet count per network telescope sensor between 20 May 2011 and 20 May
2012

ranges that are logically dispersed. In correlation studies ideal network telescope sensors

would have a fair degree of logical distance between them (i.e. not logically placed on IP

address blocks directly adjacent to each other).

Since the network telescopes are all /24, determining the logical distance is done by simply

making use the �rst three octets of the IP address. For example, with IP address A.B.C.D

one simply use the �rst three octets (A.B.C). The insigni�cant octet is removed since the

sensors' logical distance are being compared not the individual IP address. To convert an

IP address to an integer the following approach is used [20]:

ConvertINT (A.B.C) = A ∗ 224 +B ∗ 216 + C ∗ 28 (3.1)

Equation 3.1 converts IP pre�xes (A,B,C) into an integer.

Therefore the logical distance of two IP address pre�xes A.B.C and X.Y.Z is given by3:

ABS {ConvertINT (A,B,C)− ConvertINT (X, Y, Z)}

Having converted the IP address to an integer, the di�erence between the integer values

is the logical distance between the IP addresses.

3ABS = absolute value
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Table 3.1: Calculated logical distance between network telescope sensors

Using the formula above, a logical distance analysis of the IP address blocks assigned to

each network telescope sensor was conducted. Results are detailed in Table 3.1 which

shows the logical distance matrix.

From the results in Table 3.1, the telescopes are generally dispersed however Telescope

196-b and 196-c are the closest. Category A sensors are closer because they are placed

on the same high order IP pre�x (196/8). Furthermore, category A address blocks are

part of one /16 IP assignment. Of interest to the researcher is the relativity between

large logically dispersed network telescopes. Previous studies by researchers at Rhodes

University demonstrated that there is biasness of tra�c emanating from closer address

ranges [20]. The reason for this is that scanning techniques are biased to closer IP address.

3.2.2 Telescope Sensor Logical and Physical Location Analysis

Telescope sensors 146-a and 155-a (category B) have other characteristics that allow the

sensors to be grouped into one category. The IP addresses of sensors 146-a and 155-a

are managed by AFRINIC [15]. AFRINIC, as one of the �ve Regional Internet Registry

(RIR), is responsible for IP address allocations in Africa. Furthermore, high order IP

pre�x 146 and 155 are legacy assignments of IP addresses initially made by the then

Central Internet Registry, before the introduction of Regional Internet Registry [13]. Due

to high growth in demand for IP addresses, the Internet Registry was decentralized to

regional Internet Registries (ARIN, ARINIC, APNIC, LACNIC and RIPE NCC). The

role of the Internet Registry is now carried out by IANA4 (Internet Assignment Number

Authority).

Telescope sensors' 196-a, 196-b and 196-c (category A) IP addresses are also managed

by AFRINIC. Although pre�x 196 also forms part of a legacy assignment, 196-a, 196-

b and 196-c were allocated at a later date and made to relatively smaller institutions.

4http://www.iana.org/about
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Figure 3.4: AFRINIC's evolution of IP address space allocation

Although it is di�cult to trace the institutions IP apportions, given that regional registries

do not disclose personal registration information such as the name of institution, the

researcher conducted further analysis to support the observations that pre�x 155 and 146

allocations were made to larger institutions or enterprises. Each Regional Registry has an

ftp site56789 with monthly reports containing IP address space allocations and assignments.

Alternatively, APNIC also provides a link to all the ftp sites with all regional registries

monthly reports [1]. By looking at AFRINIC's monthly report10 it is observed that 146-a

and 155-a's allocations of IP address were assigned earlier; in 1991 and 1992 respectively.

It is signi�cant to note that 146-a and 155-a assignments were made prior to the sanctions

being lifted in South Africa. In 1992, South Africa's participation in the global economy

was restricted while at the same time the Internet was also in its infancy.

Figure 3.4 shows the evolution of IP allocations in AFRINIC and the date of allocation

for 146-a and 155-a (category B) as well as for 196-a, 196-b and 196-c (category A). The

diagram also reveals the apportions of IP address locations above 10,240 IP addresses

and also apportions less than 10,240 IP addresses. Moreover, the diagram highlights the

rapid increase of small IP address allocations (relative to large allocations) shortly after

the 146 and 155 allocations were made. Between 1991 and 1996, the small allocations of

IP space tracked the total allocations closely. In 1993, at the peak of allocation, there

were a total of 281 allocations, only 28 of which were large allocations. IP pre�xes for

sensors 196-a, 196-b and 196-c were apportioned on the decline of small IP address block

5ARIN - ftp://ftp.arin.net/pub/stats/arin/
6AFRINIC - ftp://ftp.afrinic.net/pub/stats/afrinic/
7APNIC - ftp://ftp.apnic.net/pub/stats/apnic/
8LACNIC - ftp://ftp.lacnic.net/pub/stats/lacnic/
9RIPENCC - ftp://ftp.ripe.net/pub/stats/ripencc/
10November 2013 Reports are used to conduct the analysis
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Figure 3.5: Evolution of daily packet count across all network telescopes

allocations relative to large IP address block allocation. The reduced activity levels (i.e.

packet counts across category B as compared to category A) and the legacy allocations

do suggest that there is bias for malicious activity towards category A network telescopes

as opposed to category B. This occurs because category B allocations were made earlier

and more likely made to larger institutions whereas category A allocations were made at

a time when the uptake of the Internet were increasing in AFRINIC.

In Figure 3.5, a graph was generated to illustrate the daily packet counts across all �ve

datasets. This graph displays activity over the years of sensors' existence with a cut-o�

date of May 2012. A lower daily packet count for category B (146-a and 155-a) relative to

category A (196-a, 196-b and 195-c) is observed. Of note, is the increase in packet count of

196-a (category A) at the end of 2008. This is due the Con�cker outbreak. Con�cker and

the impact thereof is explored further in Section 4.2. Although slightly higher, prior to

2009 sensor 196-a had a somewhat similar packet count to 146-a and 155-a with signi�cant

changes post-Con�cker outbreak.

Another element that justi�es the grouping of sensors is the neighbouring allocations

analysis on each IP pre�x with a telescope sensor. A search of AFRINIC's monthly

report11 for IP allocations with pre�xes 155 and 146 was conducted. The results showed

that in AFRINIC's allocation, pre�x 155 has only 65536 block IP allocations with a total

11ftp://ftp.afrinic.net/pub/stats/afrinic/
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Figure 3.6: Network telescope's pre�xes across all Regional Internet Registries

of ten in AFRINIC. Similarly, pre�x 146 has only 65536 block IP allocations with a total of

six in AFRINIC. Data from all Regional Registries' monthly reports is summarised further

in Figure 3.6. The diagram details the �ve network telescopes pre�xes with their respective

allocation across all the Regional Internet Registries. To demonstrate the di�erence in

allocations size, in Figure 3.6 the researcher has adopted the following categorisation:

• allocations above 10,240 IP address block grouped as `large'12 allocations and

• all other IP address blocks (less than 10,240) are grouped as `small' allocations.

Category A with pre�x 196 (AFRINIC allocations only) has a total of 745 di�erent al-

locations of varying sizes from 256 to 262144 with 91% of the allocations in the `small'

category and the remaining 9% in the `large' category. This is di�erent to IP pre�x 146 or

155 where there are only `large' allocations that are contained in AFRINIC. With other

Regional Internet Registries, 146 and 155 comprise mainly of `large' apportions, 79% and

98% respectively.

It has been shown that the neighbouring IP block allocations for category B are gener-

ally larger than category A. Therefore, it can be expected that allocations in category

12The de�nition of large is not matched to regional registry's de�nition of large but used to show the
intensity of smaller allocations.
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B were made to large corporations or institutions. Moreover, one can infer that larger

corporations or institutions would have a higher maturity of security systems. Neigh-

bouring IP block allocations for category A, are generally smaller (less than 10,240 IP

addresses). Similarly, it can be expected that category A neighbours are more likely to be

small enterprises or those engaged in end-user activities. These users would have limited

expertise and lack the capability to maintain information security systems. Additionally,

most allocations made in the 146 or 155 pre�x are part of ARIN (American Registry for

Internet Numbers). ARIN is mainly responsible for the United States, Canada and a few

Caribbean Islands [2]. IP pre�x 196 has a `large' number of allocations in AFRINIC.

Clearly, allocations to ARIN are largely made to developed regions and AFRINIC alloca-

tions are made to developing regions. Classi�cations of regions can be obtained from the

World Bank's website [3]. It is important to note that IP space allocations only represent

countries to which the original allocations were made [1]. Consequently, there are limita-

tions to using Regional Internet Registry data because IP address space may be assigned,

for example, to multi-nationals with operations in multiple countries and therefore the

original location may be inaccurate.

3.3 Tools Used in the Research Project

In this section a discussion of tools that have been used to conduct the research is provided.

The rationale behind the selection and the e�ciencies realised are also highlighted. For

querying and conducting basic data analysis, the researcher made use of PostgreSQL13.

The majority of statistical analysis and graph generation was conducted using the R

Statistical package14.

3.3.1 Relational Database - PostgreSQL

As discussed in Section 3.1.3, data captured in PCAP �les is parsed to a relational

database. Since data is stored in a relational database, SQL querying language pro-

vides a �rst step in categorising and performing queries that are used as inputs to further

process through R Statistics.

13http://www.postgresql.org/
14http://www.r-project.org/
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The relational database is hosted in a PostgreSQL instance. An advantage to using

PostgreSQL is having a cross-platform relational database that operates under di�erent

platforms (UNIX,Windows or Mac).

The PostgreSQL graphical user interface (pgAdmin15) provides a platform for rapid query

development. Having packet information already parsed into an SQL database meant

that the researcher could simply abstract from details of parsing data from PCAP �les

into a database. This enables the researcher to focus primarily on data analysis using

PostgreSQL and pgAdmin. This approach, used extensively at Rhodes University, allows

researchers to focus on performing experiments rapidly.

3.3.2 Statistical Package - R Statistics

For statistical computing and the construction of graphs, the R Statistics package has

been the preferred software package. R is selected because it is an open source software

package that can run on multiple platforms (UNIX, Windows or Mac). As it is open

source software, R Statistics has good documentation with an extensive online community

presence. R Statistics consists of a command-line interface with an intuitive programming

language. R Statistics has a built-in capability to produce advanced graphs using simple

commands.

3.4 Summary

This chapter provided an overview of the datasets, indicating how they are being accessed,

as well as sharing a summary of the processing of data into a SQL database. A period

of 12 months between 20 May 2011 and 20 May 2012 was selected based on the available

online datasets. The annual period caters for possible seasonal changes.

The chapter provides a brief description of the datasets and showed that telescope sensor

196-a, 196-b and 196-c had roughly the same amount of packets. Similarly, but to a

lesser extent, 146-a and 155-b had a related amount of total packets. Empirical data

analysis justi�ed the selected categorisation of the �ve telescope sensors into two categories

(category A and category B). Sensors 196-a, 196-b, 196-c all formed part of category

A while 146-a and 155-a formed part of category B. The justi�cation of the categories

assigned was determined by a combination of factors:

15http://www.pgadmin.org/
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• Similarities in packet size observed under the period of investigation.

• The logical distance between the network telescopes. Although the sensors are

logically dispersed and not placed on adjacent IP address block, as can be expected,

196-a,196-b, 196-c were relatively closer.

• The logical location of the telescope sensors. It was shown that, due to legacy

apportions of IP address blocks, category B sensors (146-a and 155-a) and category

A (196-a, 196-b, 196-c) sensors allocations are a�ected by the time at which the

IP block apportions were made. The allocations for Category B sensors were made

earlier (1991 & 1992) and category A sensors allocations were made later (1995).

The observations made showed that category A sensors are located in more `end-user'

environments which are more susceptible to attacks and malicious activity. This was

di�erent to allocations in category B which were larger allocations and likely to have been

made to bigger organisations.

In closing, a brief discussion of the relational database tools and the statistical package

used was provided. Tools were selected to allow the researcher to abstract away from the

hurdle of setting the infrastructure and the system, but rather to focus on analysis and

comparative studies of the data.

Given this background, which describes the datasets of all sensors, together with the

analysis of the location thereof, the next chapter will focus on the initial �nding of the

study by comparatively analysing tra�c observed across all �ve sensors.



Chapter 4

Comparative Analysis of Tra�c

Chapter 3 focused on providing a basis for the project by pro�ling the sensors and de-

livering an analysis of the location thereof. Initial observations of total packet count for

the �ve network telescopes and the logical distance between sensors provided a natural

categorisation of network telescopes sensors: sensors 196-a, 196-b and 196-c as category

A; and sensors 146-a and 155-a as category B.

The overarching approach in this chapter is to conduct a comparative analysis of network

telescopes' sensors by using summarisation and a basic statistical analysis of each dataset.

Graphs will be presented to support the observations.

This chapter compares the �ve network telescopes' datasets highlighting similarities and

observed di�erences. Since the research project follows an iterative process and is based

on empirical datasets, the initial results will be studied and a re�nement of experiments

will be conducted to improve or optimise the results.

4.1 Dataset Comparative Analysis

The initial approach in analysing the relativity of a telescope sensor's tra�c activity is to

�rst use summarisation techniques and the graphical representation of trends over time.

Summarisation techniques will be used to construct basic metrics. These metrics will be

used to investigate packet distributions across the following: major protocols, source and

destination ports, and source and destination IP addresses. To investigate underlying

trends, generated packet counts are categorised into various period bins (monthly, daily

35
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Figure 4.1: Daily packet count of telescope sensors 196-a, 196-b and 196-c between 20
May 2011 and 20 May 2012

and hourly) and placed into various groups (`All packets', TCP, UDP or ICMP). Time

series' constructed in this chapter will be used in Chapter 5 for conducting advanced

correlation analyses of time series.

4.1.1 Periodic Packet Counts

The �rst sets of series constructed are general packet count (including all packet types)

with various bins (daily, monthly and hourly). These periodic packet counts allow re-

searchers to monitor tra�c activity over time and assist in discerning trends and detecting

anomalous activity. Having time series plots on same set of axis also allows the researcher

to monitor changes of activity in one sensor relative to other sensors.

Constructed series will cover the selected 12 months period (May 2011 to May 2012). As

previously stated, when conducting a comparative analysis for sensor 196-b, a six-month

period is used to cater for downtime experienced (i.e. only considered the overlapping

six-month period across all other telescope sensors). SQL scripts were used to construct

the time series by counting the number of packets received on various time bins.

Figure 4.1 shows a daily packet count of sensors 196-a, 196-b and 196-c (classi�ed previ-

ously as category A). The plot shows related peaks and troughs of packet counts suggesting

relativity of daily tra�c activity across the network telescopes. In addition, the general

shape and trend of the activity also suggest relativity of tra�c activity across category A.

Category B (146-a and 155-a) telescopes (shown in Figure 4.2) do show some relativity.

These, however, are not as strongly correlated as category A.
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Figure 4.2: Daily packet count of telescope sensors 146-a and 155-a between 20 May 2011
and 20 May 2012

Graphical results show that there is less similarity in inter-category comparisons relative

to intra-category comparisons. When examining monthly packet counts, although more

summarised, a similarity of trends and the general shape of activity for category A sensors

can be observed. Monthly and hourly graphs are included in Appendix C , as well as a

combined logarithmic plot of all the telescopes' sensors in one chart.

Visual results observed are aligned to initial observations made regarding relativity on

tra�c activity in each category. Outliers or tra�c spikes are marked with letters �A�, �B�,

and �C� in Figure 4.1. The tra�c spikes are uncoordinated across the relative sensors

and, therefore, it can be expected that these spikes would cause distortion in relativity

analysis. This rapid build-up of tra�c will be explored in detail later on in the chapter.

4.1.2 Packet Type Analysis

Before analysing each tra�c type separately, an analysis of packet distribution across

the major protocol (TCP, UDP and ICMP) is conducted. In this experiment, tra�c has

been summarised by the percentage share of each major protocol across the �ve network

telescope sensors using the selected annual period. Figure 4.3 shows the percentage of

packets of each protocol across the �ve sensors. The results show that category A network

telescopes (196-a, 196-b and 196-c) have a similar distribution of packets across the major

protocols (TCP, UDP and ICMP). TCP, UDP and ICMP tra�c have a total combined

contribution of more than 99,9% across all datasets. Although sensor 196-b only has

a six-month overlap period, the telescope sensor has an almost identical distribution of
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Figure 4.3: Packet type per network telescope

packets across the major protocols relative to other category A sensors. TCP tra�c is

dominant in category A telescope sensors, accounting for 90% of all tra�c. UDP tra�c

and ICMP tra�c have a lesser share of the tra�c in category A.

It is evident that category B network telescopes (146-a and 155-a) have a slightly reduced

level of TCP dominance, while UDP and ICMP proportion is higher in category B relative

to category A telescopes. One reason for this di�erence in TCP tra�c is the prevalence

of Con�cker-related tra�c in category A telescopes (Con�cker worm is discussed in detail

in Section 4.2).

The results show similarities in the distribution of packets across the major protocols for

category A telescope sensors. Category B telescope sensors also have a similar distribution

of packets across the major protocols. Additionally, these results are comparable to the

results observed in previous work [16]. Interestingly, results obtained by a di�erent study

[38], with a week's trace of data between 28 April 2004 and 5 May 2004, shows ICMP

tra�c as the second-largest contributor of tra�c as opposed to UDP. Notwithstanding the

short period of analysis (April 28 to May 5), the lower UDP packet count was caused by

�ltering of port 1434/udp which is associated with Slammer worm. Although the oldest

sensor in this research (sensor 196-a) starts its collection of data from 2005, it can be seen

in Figure 4.41 that UDP tra�c has, for the majority, been the second-largest contributor

of tra�c on 196-a. However, a brief period (shown with the callout box in the diagram)

between August and October in 2006 where ICMP tra�c was second-largest contributor

1Double bars on the diagram indicate that the extreme values exceed 40,000 daily packet count
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Figure 4.4: UDP and ICMP daily packet count of telescope sensor 196-a between 3 August
2005 and 20 May 2012

of tra�c is observed. ICMP packet spikes are also observed resulting in a larger ICMP

packet count.

As an example of category A tra�c composition, by examining sensor 196-c's daily packet

count broken down into the three major protocols (shown in Figure 4.5), it is observed

that daily the TCP packet count is a dominating indicator and tracks the daily `All

packet types' series. Sensor 196-c's daily packet count plot shows the TCP packet count

series being distant from the UDP and ICMP's packet count series. That is, there is a

higher magnitude of TCP packet counts than UDP or ICMP. It is observed that minimal

deviations are caused by the underlying UDP or ICMP packet activity. Although the y-

axis uses a logarithmic scale of 10, it is evident that only high levels of UDP �uctuations

have an intermittent in�uence on `All packet types' series. Related points where UDP

activity caused �uctuations are highlighted on the chart (letters �A�, �B� and �C�).

Figure 4.6 shows the packet count across major protocols (TCP, UDP and ICMP) for

sensor 146-a as an example of a category B telescope. The dominance of TCP is weaker

compared to the `All packet types' series. In contrast to sensor 196-a, results show that

UDP and ICMP counts are closer to TCP counts and therefore the UDP variable has a

greater in�uence on the `All packet types' variable. To this end, the daily packet count

variable does not closely track the TCP Only packet count variable. This means that, as

opposed to category A, the other tra�c types (UDP and ICMP) have a greater in�uence

on the �uctuations of the daily tra�c activity.
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Figure 4.5: Daily packet count of telescope sensor 196-c between 20 May 2011 and 20
May 2012 - protocol overview

Packet count contribution of tra�c outside of TCP, UDP or ICMP is extremely small

(between 0.004% and 0.02%) across all network telescope nodes. Hence, the researcher

did not analyse other packet types, as network telescope tra�c activity is considered

insigni�cant.

4.2 TCP Analysis - Destination Port

As already indicated, TCP tra�c is the most common protocol across all the sensors.

TCP protocol o�ers a reliable communication service by establishing connection between

hosts and implementing �ow control, as well as acknowledgment techniques [10]. This

section, as part of an separate analysis of TCP tra�c data, will investigate the top ports

that account for a signi�cant amount of TCP tra�c.

Table 4.1 shows TCP's top 20 ports for all telescope sensors as a proportion of all TCP

packets. Results show that between 68.3% and 74.1% of tra�c routes to the top �ve ports

in each network telescope, with the exception of sensor 155-a. Sensor 155-a has a �atter

distribution of packets across the top 20 ports because the top 20 ports accounts for 56%

of all TCP tra�c. The dominance of port 445/tcp in category A network telescopes is

quite evident with roughly 67% of the tra�c routing to port 445/tcp.

A brief description of the transport protocol port numbers and the service can be obtained

from IANA2. A description of the top four ports is provided below:

2http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
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Figure 4.6: Daily packet count of telescope sensor 146-a between 20 May 2011 and 20
May 2012 - protocol overview

Table 4.1: Top 20 TCP destination ports across all telescope sensors

Rank
196-a 146-a 155-a 196-b 196-c

Port % Port % Port % Port % Port %

1 445 66,9% 445 21,9% 3389 9,4% 445 64,1% 445 66,6%

2 22 2,2% 3389 17,6% 1433 7,3% 80 2,6% 22 2,1%

3 80 2,0% 80 12,2% 80 7,0% 22 2,4% 1433 2,0%

4 3389 1,9% 1433 10,8% 445 6,7% 3389 2,0% 80 1,9%

5 1433 1,7% 8080 5,8% 57471 4,8% 1433 1,6% 3389 1,5%

6 49787 1,0% 22 5,7% 22 4,0% 23 1,3% 10300 1,0%

7 23 1,0% 23 4,5% 8080 3,1% 8080 1,1% 8080 0,9%

8 8080 0,9% 139 4,0% 23 2,6% 1234 0,7% 135 0,9%

9 135 0,8% 135 1,8% 1234 1,8% 135 0,7% 23 0,8%

10 5900 0,6% 3306 1,6% 1024 1,5% 443 0,6% 5900 0,6%

11 443 0,5% 443 1,3% 3072 1,4% 3306 0,5% 3306 0,5%

12 25 0,4% 5900 1,0% 139 1,2% 25 0,5% 443 0,5%

13 1234 0,4% 25 1,0% 3306 1,0% 39459 0,3% 25 0,4%

14 139 0,3% 4899 1,0% 443 1,0% 5900 0,3% 1234 0,4%

15 3072 0,3% 9415 0,9% 135 0,8% 1024 0,3% 3072 0,3%

16 1024 0,3% 8909 0,8% 5900 0,8% 3072 0,3% 1024 0,3%

17 3306 0,3% 21 0,6% 21 0,8% 110 0,3% 46904 0,3%

18 110 0,2% 210 0,4% 25 0,7% 15215 0,2% 139 0,3%

19 3128 0,2% 3128 0,4% 0 0,5% 139 0,2% 3128 0,2%

20 6881 0,2% 5631 0,3% 8909 0,5% 34643 0,2% 21 0,2%

Others 17,9% 6,4% 43,25% 19,9% 18,3%
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Figure 4.7: Port 445/tcp vs. no 445/tcp - daily packet count of all telescope sensors
between 20 May 2011 and 20 May 2012

• Port 445/tcp runs Microsoft's active directory service. Con�cker worm uses a spe-

cially crafted remote procedure call over port 445/tcp [39]. Therefore, the dominance

of 445/tcp across sensors 196-a, 196-b and 196-c is due to Con�cker and related

scanning. Additional detailed analysis of Con�cker will be conducted shortly.

• Port 80/tcp is responsible for HTTP tra�c and the port's high ranking is expected

since the port listens to web tra�c.

• Port 22/tcp and port 3389/tcp are responsible for secure socket shell (SSH) and

remote desktop protocol respectively. The high ranking of these ports indicates

substantial SSH and RDP scanning.

Given the large presence of Con�cker worm, additional analysis of the worm is carried

forward. Con�cker is a self-propagating worm which appeared in November 2008. Con-

�cker exploit uses a specially crafted remote procedure call causing infected Microsoft

machines (2000, XP, 2003 Server and XP) to run instructions without authentication

[39]. Traces of Con�cker date back to September 2008, however, by the end of October

2008 Microsoft had released a patch [27]. The outbreak of Con�cker only came online in

mid-November 2008. The existence of Con�cker, at the time of writing, is an indication of

the lack of uptake in patch management given that a patch was released since in October

2008. As discussed in Section 3.2, the high order IP pre�x 196 generally has smaller IP

space assignments and is located in developing countries with relatively less maturity in

information security. In this regard, it is likely that patch management is not prioritised

given the more `end-user' environment present. These factors would result in a relatively

more vulnerable IP space that is attractive to malicious attacks. This can be seen as a
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contributing factor to increased scanning in these environments. In Section 3.2 it was

shown that larger IP apportions were generally made for 146 and 155 IP pre�xes. Fur-

thermore, apportions in 146 and 155 pre�xes were mostly made to developed countries

and, as such, it can be expected that there is increased knowledge of information security

and application of patches.

Apart from the di�ering logical and physical location of sensors, Con�cker has, however, a

bug in its random number generator. The number generator is used to create IP addresses

used to identify hosts. A Windows random generator provides 15-bit random numbers. In

order to create a 32-bit IP address, Con�cker uses two 15-bit random number generators

[39]. This e�ectively means that there are two bits (�rst bit of Octet 2 and 4) that are not

catered for in the �nal generated IP address resulting in excluded IP space. The excluded

range of IP addresses falls between [5]:

x.128.x.x− x.255.x.x (4.1)

and

x.x.x.128− x.x.x.255 (4.2)

Another reason for the natural categorization of category A and category B sensors is the

comparison of IP address for category A sensors relative to those of category B. Given

the range in Equation 4.2 and looking at the full IP address, sensors 146-a and 155-a

(category B) fall outside Con�cker's target range, while 196-a, 196-b and 196-c (category

A) are inside Con�cker's target range [16]. To show the impact of this di�erentiation,

the researcher constructed a time series with all TCP packets excluding port 445/tcp. A

second set of series are constructed with TCP packets that only route to port 445/tcp.

Figure 4.7 shows quite clearly that `non-TCP' tra�c has relatively similar peaks and

troughs across all �ve network telescopes. Looking at 445/tcp only, it is observed that

there is a disjunction between category A and category B - with category A experiencing

higher packet counts than category B.
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Table 4.2: Top UDP destination ports across all telescope sensors

Rank 196-a 146-a 155-a 196-b 196-c

Port % Port % Port % Port % Port %

1 5060 34,98% 5060 19,87% 5060 22,53% 5060 32,38% 5060 52,61%

2 [19416] 6,74% [24003] 14,61% 1434 6,24% [21566] 12,34% [22549] 8,61%

3 1434 4,22% 1434 5,34% 6257 2,41% 1434 5,14% 1434 6,58%

4 137 2,15% 6257 2,02% 137 1,99% 137 1,66% 41560 5,07%

5 6257 1,66% [18261] 1,87% 53 1,99% 6257 1,62% 137 3,13%

6 [473] 1,63% [41511] 1,80% [6568] 1,76% [1046] 0,94% [41559] 2,73%

7 [38834] 1,43% [4375] 1,78% [60505] 1,57% [48170] 0,84% 6257 2,51%

8 [6655] 0,88% 137 1,60% [43815] 1,20% [1288] 0,52% [64578] 2,14%

9 [26848] 0,83% [5159] 1,20% [32737] 0,98% 53 0,52% 53 2,12%

10 53 0,82% [21284] 1,06% 39455 0,95% 39455 0,51% 54311 1,87%

Others 44,67% 48,85% 58,37% 43,52% 61,57%

4.3 UDP Analysis - Destination Port

Continuing from the previous TCP section, this section focuses on UDP as the next

common protocol. UDP is a lightweight (i.e. has less packet overhead compared to

TCP) and connectionless protocol [40]. Unlike TCP, UDP does not guarantee delivery

packets or the protection against duplicates. Table 4.2 shows the top 10 UDP ports for

all network telescopes based on the proportion of tra�c routing to a particular port. Port

5060/udp ranks the highest across all the sensors. Port 5060 is widely used for SIP3

(Session Initiation Protocol) tra�c. SIP is responsible for multimedia communication

including voice, video and voice over IP [21]. Results therefore show the prevalence of

SIP scanning in UDP tra�c.

An observation worth taking into account is the high ranking of port 1434/udp across all

sensors, signifying the presence of SQL Slammer worm. Slammer worm exploits bu�er

over�ow vulnerability on computers running Microsoft SQL Server [33]. At the time of

writing, Slammer has been present for over a decade since its outbreak on the 25 January

2003. Following the outbreak, Microsoft released a patch on 31 January 2003 [29]. The

presence of Slammer from its outbreak in January 2003, up to the time of this study,

again reiterates the lack of the information security awareness in implementation patches.

Of interest is the unusually high 24003/udp ranking in the top 10 ranking. This is

signi�cant because 24003/udp only appears in sensor 146-a (highlighted in bold on the

3port list available at http://www.iana.org/assignments/service-names-port-numbers/service-names-
port-numbers.xml
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Figure 4.8: Anomalous spike - sensor 146-a on port 24003/udp

Figure 4.9: Anomalous spike - sensor 196-a on port 19416/udp

port table). While investigating activity on 24003/udp, the daily packet count shown in

Figure 4.8 highlights very limited to no activity for sensor 146-a for the whole year except

a signi�cant build-up between the 3 and 7 May 2012. In addition, results indicate that

the target was on a single IP address within the sensor address space. The source IP

address count also shows that there were roughly 284 di�erent IP addresses routing to

24003/udp. Hourly packet count analysis shows a build-up over the weekend, from Friday

morning until Monday morning (shown in Figure 4.10).

Likewise, an investigation of sensor 196-a also indicated that 19416/udp (also uncommon

to all other telescopes) experienced a similar spike of tra�c on 28 October 2011. The

results of 19416/udp are captured in Figure 4.9. Results show no packet count for an

entire year except for 28 October 2011 and 31 October 2011. There were 127 di�erent

and distinct source IPs routing tra�c to one destination IP (196.x.x.0). By manually

examining the top three ports, the researcher also identi�ed anomalies (i.e. rapid packet

build-up) on:

• port 21566/udp for sensor 196-b (results shown in Figure 4.11); and

• port 22549/udp for sensor 196-c (results shown in Figure 4.12).
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Figure 4.10: Hourly series of an anomalous spike - sensor 146-a on port 24003/udp

Figure 4.11: Anomalous spike - sensor 196-b on port 21566/udp

Figure 4.12: Anomalous spike - sensor 196-c on port 22549/udp
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When analysing UDP tra�c, the term `anomalous tra�c spike' is used to classify events

that resemble that of a denial-of-service attack. Detailed analysis of denial-of-service at-

tacks is beyond the scope of this paper and therefore the researcher refrains from carrying

out further investigations to ascertain whether these anomalous spikes are in fact denial-

of-service attacks. Anomalous spikes are classi�ed according to the following criteria:

• Sudden rapid build-up of UDP packets to a speci�c port.

• Distributed machines being used to launch an attack. Although IP spoo�ng (gen-

erating random source IP address) can be achieved rather easily, multiple source IP

addresses are an indication of a potential distributed attack.

• Tra�c routing to a single destination IP through a speci�c port.

Anomalous tra�c spikes cause deviations on correlation with network telescope tra�c

activity. This occurs because these anomalous spikes focus on a single machine or IP

address and are not replicated on other network telescopes. Furthermore, the packet

counts would form outliers due to the rapid packet build-up.

The initial observations of anomalous spikes were the result of the researchers noticing

unique ports in the top 10 UDP ports. Following in the same thought process, a method

of looking for unique ports with relatively large packet count is presented. The researcher

constructs a matrix, denoted as X and represented by Equation 4.3, with top 1 . . . n

ports across all telescopes (a, b, c, d, e). Ports are ranked based on the proportion of tra�c

routing to a particular port with a cuto� value of (n) for the rankings. A threshold value

(p) is selected to signify the lowest ranking of ports that is considered. Another matrix,

denoted as Matrix Y and represented by Equation 4.4, with ports ranking from n . . . p is

developed. A search for unique values (port numbers) in Matrix X is then conducted. If

a unique value was found in Matrix X, unique values are compared to all the values in

Matrix Y . Matrix Y is constructed to ensure that values that are unique in Matrix X

are not merely unique because of the cuto� imposed by the height (n) of Matrix X. If

unique values were not found in the second matrix, the port number is considered as an

anomaly requiring additional investigation.

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

an bn cn dn en

(4.3)
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and

an+1 bn+1 cn+1 dn+1 en+1

. . . . . . . . . . . . . . .

an+p bn+p cn+p dn+p en+p

(4.4)

Table 4.3: Anomalous spike investigation results using UDP tra�c

Sensor Port Duration & Packets
4

destination IP di� SrcIPs Anom. spike?

196-a 473 multiple days "196.x.x.109" 699 Unclear

196-a 38834 1 day btw 14:00 and 16:00 (18763 packets) "196.x.x.14" 5824 Yes

196-a 6655 1 day (11488 packets) "196.x.x.0" 79 Yes

196-a 26848 1 day at 17:00 (10835 packets) "196.x.x.140" 5 Yes

146-a 18261 2 days (15:00 to 3:00-next day) "146.x.x.0" 191 Yes

146-a 41511 multiple days multiple 11128 Unlikely

146-a 4375 1 day btw 4 and 5 am (18506 packets) "146.x.x.110" 3450 Yes

146-a 5159 multiple days "146.x.x.99 & 114" 7509 Unclear

146-a 21284 1 day btw 06:00 and 07:00 (1096 packets) "146.x.x.0" 94 Yes

155-a 6568 1 day at 03:00 (16095 packets) "155.x.x.120" 1 Yes

155-a 60505 multiple days "155.x.x.165" 652 Unclear

155-a 43815 multiple days multiple 6472 Unlikely

155-a 32737 multiple days multiple 178 Unlikely

196-b 1046 1 day btw 16:00 and 17:00 (7888 packets) "196.x.x.120" 1499 Yes

196-b 48170 1 day btw 07:00 and 11:00 (7079 packets) "196.x.x.175" 2635 Yes

196-b 1288 1 day btw 04:00 and 05:00 (4415 packets) "196.x.x.120" 1270 Yes

196-c 41559 multiple days "196.x.x.143" 954 Unclear

196-c 64578 multiple days "196.x.x.72" 328 Unclear

To implement this technique, an experiment was conducted looking at top 10 ports (i.e.

n = 10) and selecting a threshold of 10 (p = 10). Using this technique, a total of 22

UDP port numbers were identi�ed spread across all �ve telescopes. Manual analysis of

the 22 ports was used to look at the duration of tra�c routing to the speci�c UDP port,

as well as the destination and source IP addresses. Table 4.3 shows the results of manual

analysis5. Of the 22 ports numbers identi�ed:

• 146 ports numbers that were identi�ed exhibited behaviors that allows for them to

be classi�ed as anomalous spikes.

• 5 required additional analysis to categorise.

5The other 4 ports analysed above are not included on the table
6ten plus the four previously analysed
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• 3 were categorised as unlikely to be anomalous spikes.

4.4 ICMP Analysis

ICMP (Internet Control Message Protocol) is a relatively simple protocol however; there

is limited awareness of the security issues that are associated with the protocol [44].

ICMP is used to send messages about problems in the network [41]. Therefore, ICMP

o�ers error reporting and allows users to investigate tra�c issues. Attackers also use the

ICMP protocol in �ngerprinting and scanning. This is achieved by using the `ping' and

the `traceroute' command to detect online hosts and to determine the path towards the

target [44].

ICMP messages can be grouped into ICMP error messages and ICMP query messages.

The two ICMP �elds, which are stored in the experimental database, are ICMP Type

(the message type) and the ICMP Code (which provides further details of ICMP message

type). Table 4.4 shows the top ranking ICMP types observed across the �ve sensors.

Below is the de�nition of ICMP types and their respective message type numbers [42][26]:

• Echo Reply (0) & Echo Request (8) are used to test for network connectivity through

the `ping' command.

• Destination Unreachable (3) message is sent when the destination is unreachable.

• Time Exceeded (11) message is sent when a host drops the packet due to time to

live (TTL) being exceeded7.

Results obtained in Section 4.1.2 showed that the percentage of ICMP packets was rel-

atively small, ranging between 2.1% and 2.7%. Comparatively, sensors 146-a and 155-a

have 12.8% and 8.9% of ICMP packets respectively. The di�erence between category A

and category B's percentage share of the total packets is due to the larger TCP tra�c

observed in category A sensors. Results in Table 4.4 show that the composition of the

ICMP packet types observed across all network telescope sensors is relatively similar, with

a small di�erence observed with sensor 196-b. The similarity in ICMP packet counts, as

well as the portion of each packet type, provides initial evidence of similarities of ICMP

tra�c observed in all sensors.

7Alternatively the time to live �eld will be zero when it is discarded
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Table 4.4: ICMP tra�c distribution across sensors

ICMP Type
196-a 146-a 155-a 196-b 196-c

Packets % Packets % Packets % Packets % Packets %

Echo Request 387154 65.6% 357603 69.2% 380592 69.4% 207254 58.3% 355285 64.9%

Dest Unreachable 125340 21.3% 108461 21.0% 112396 20.5% 71800 25.8% 121762 22.3%

Time Exceeded 62535 10.6% 36778 7.1% 42809 7.8% 45185 12.7% 54777 10.0%

Echo Reply 10777 1.8% 12186 2.4% 11085 2.0% 9504 2.7% 10794 2.0%

Others 3926 0.7% 1603 0.3% 1304 0.2% 1877 0.5% 4556 0.8%

Total 589732 516631 548186 335620 547174

Table 4.5: Central tendency and variation results using daily and hourly packet counts

196-a 146-a 155-a 196-b 196-c

Daily Hourly Daily Hourly Daily Hourly Daily Hourly Daily Hourly

Mean 69300 2898 10990 460 16900 705 66980 2791 70590 2941

Median 68460 2821 9973 321 15800 590 65230 2683 69060 2833

SDev 9574 998 6227 513 6057 566 10533 1271 9248 983

4.5 Basic Statistical Analysis

The mean and variance statistics are important to understand the outlay of datasets as

they summarise the centrality and spread of data. In an e�ort to measure the central

tendency of periodic packet counts, the mean and the median calculations are considered.

An explanation of these statistical methods is contained in Appendix A. The median is

also calculated to avoid the in�uence of excessive outliers on the mean.

Table 4.5 details the mean, median and standard deviation of each sensor at di�erent

period groupings of packets (daily and hourly). Results show that the mean of packet

counts either daily or hourly, is slightly higher than the median. The di�erence between

the mean and the median shows the in�uence of outliers. Similarity of mean values is

observed between sensors 196-a, 196-b and 196-c. As visually observed in Section 4.1,

sensors 196-a, 196-b and 196-c have a similar trend in tra�c activity. The lower mean

and median for sensor 146-a and 155-a are caused by lower total packet counts.

To measure how data is dispersed, variance and standard deviation calculations are used.

Dispersion methods such as variance and standard deviation are important as they show

how widely spread values can be from the mean. Similar to previous views on central

tendency with the mean, sensors 196-a, 196-b and 196-c have similar standard deviation.

The box and whisker plots are considered to summarise the degree of spread of the daily
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Figure 4.13: Box plot of daily packet count for all sensors

packet count parameter. Figure 4.13 shows the �ve box plots in one set of coordinates.

The box plot, constructed using daily packet counts, displays an overview of the distri-

bution of daily counts. The box plot also had outliers removed to suppress distortion

caused by excessive outliers. The thicker black line shows the median and the 25th and

75th percentile are represented by the top and bottom of the �box� [30]. Maximum and

minimum values (excluding outliers) are displayed by the horizontal lines above the �box�

(or alternatively the whisker). Based on the box plot's position and spreads there is a

clear distinction between category A sensors (196-a, 196-b and 196-c) and category B

sensors (146-a and 155-a). The results obtained from the box-plots support the categories

into which the sensors have been placed.

4.6 Source IP Address Analysis

In this section, an analysis of the source IP address, relative to the total packet counts,

is provided with results captured in Table 4.6. A total of 74.3 million di�erent packets

were captured by the �ve network telescopes' sensors over the period of one year. The

captured packets were sourced from 10.3 million di�erent IP addresses. When analysing

each network telescope node separately, it was observed that category A telescopes have

similar packets per IP of 6.7 with a higher total packet count. However sensors 146-a

and 155-a have 10.3 and 15.1 packets per IP respectively. The weakness of this metric

is that IPs can be spoofed relatively easily and thus, this is not necessarily an accurate



4.7. SUMMARY OF FINDINGS 52

Table 4.6: Distinct source IP addresses

196-a 146-a 155-a 196-b 196-c Total

Distinct source IP 3 813 944 392 077 409 762 1 908 204 3 815 196 10 339 183

Total packet count 25 362 068 4 023 238 6 184 900 12 861 095 25 835 932 74 267 233

Packet count / Distinct source IP 6,65 10,26 15,09 6,74 6,77

representation of the actual distinct source IP address. Nonetheless, the average packet

per IP measure and the observed impact of Con�cker does provide grounds that category

A telescopes are placed on a more hostile segment of the network space than category B

ones.

4.7 Summary of Findings

This section summarises the �ndings of the chapter. Its main aim is to examine related

�ndings highlighted within the chapter.

A number of periodic time series' were constructed to show network telescope tra�c

activity. Periodic packet count plots showed that category A sensors (196-a, 196-b and

196-c) had similarities of tra�c activity. Category B sensors also showed similarities in

tra�c activity however less so when compared to category A results.

When analysing the major protocols, results showed that category A had a similar distri-

bution of packets in major protocols (TCP, UDP and ICMP). TCP protocol was observed

as dominant in category A with 90% of the tra�c being TCP tra�c. Results also showed

similarities in the distribution of tra�c across the major protocols in category B (146-a

and 155-a). TCP tra�c dominance was slightly reduced in category B sensors with 61%

and 76% of all tra�c being TCP tra�c for sensor 146-a and sensor 155-a respectively.

In category A, TCP tra�c's daily packet counts tracked the total packet counts (i.e. daily

tra�c activity) showing the dominance of TCP tra�c. In category B, unlike category A,

UDP and ICMP tra�c caused �uctuations on the relativity of tra�c activity showing

the signi�cance of UDP and ICMP when considering the activity of all tra�c. Other

protocols, apart from UDP, TCP and ICMP, accounted for an insigni�cant proportion

(less than 0.02%) of tra�c and, therefore, were not explored further.

Analysis of TCP tra�c showed the following:
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• Port 445/tcp is dominant in category A sensors accounting for more than 60% of

all TCP tra�c. Category B sensors had a reduced level of 445/tcp tra�c with 22%

for 146-a and 9% for 155-a.

• There was a signi�cant prevalence of Con�cker worm. It was observed that, due

to algorithmic errors in the random number generator of the worm, there were IP

address ranges that were unreachable. Category B sensors fell under the unreachable

address range. The pervasiveness of Con�cker was seen as a contributing factor to

the large di�erence in packet counts between category A and category B sensors.

With UDP tra�c as the second-largest contributor of tra�c, the following results were

obtained:

• Conducting port analysis showed the prevalence of SIP scanning and SQL Slammer.

• UDP tra�c contained a number of rapid packet build-up (termed as anomalous

spikes) which resembled distributed denial-of-service. Anomalous spikes were unco-

ordinated and directed towards a single sensor at a time.

• UDP port analysis showed that the top 10 ports observed in all sensors had 22

ports that were unique. These ports were suspected to contain anomalous spikes.

Through manual investigation of the 22 ports: 14 were categorised as anomalous

spikes, 5 required additional analysis and 3 were unlikely to be anomalous spikes.

Anomalous spikes were uncoordinated and therefore caused deviations in relativity

of UDP tra�c's activity.

Analysis of ICMP tra�c showed the following results:

• ICMP tra�c was uniformly distributed across all the sensors (i.e. similar packet

counts across all ICMP types).

• The prevalence of �ngerprinting was clear due to the number of Echo Requests

observed.

Basic statistical methods such as mean, median and standard deviations were also used

to comparatively analyse the datasets. Daily and hourly tra�c was analysed and it was

observed that the median was generally lower than the mean. This is due to the in�uence

of outliers. Comparatively, it was shown that category A sensors had similar values for
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mean, median and standard deviation. Although there were similarities in the lower values

being obtained in category B, there were slight disparities between the values of statistics

generated. The box plots generated showed a clear disjunction between category A and

category B sensors.

4.8 Summary

The approach followed in this chapter was to �rst conduct a comparative analysis of the

tra�c generated by all sensors. It focused on using summarisation and basic statistics

techniques with results being presented in graphs and tables. Generated packet count

series' plots showed similarities in tra�c activity on category A telescope sensors. Sim-

ilarities of tra�c activity on category B telescopes were also observed but were not as

correlated as category A. Con�cker accounted for a signi�cant proportion of packets in

the category A sensors however, less so for category B sensors. UDP tra�c analysis

showed a signi�cant amount of anomalous spikes that would cause deviations in relativity

of UDP tra�c. ICMP tra�c analysis showed that tra�c was distributed uniformly in

di�erent types of ICMP messages and across all sensors.

Initial comparative analysis provides a foundation for more advanced cross-correlation

analysis experiments. The next chapter uses time series' to quantitatively analyse corre-

lation of tra�c activity.



Chapter 5

Advanced Correlation Analysis - Time

Series

The results shown in Section 4.1 support the basis on which the �ve network telescopes

sensors have been categorised. Through summarisation and basic numeric statistics tech-

niques, it has been observed that there are similarities in sensor tra�c activity between

category A telescope sensors (196-a, 196-b and 196-c). Likewise, though to a lesser extent,

there are also similarities between category B telescope sensors (146 and 155), but these

are distinctly di�erent from category A.

Time series can be constructed by using variables with a �xed time period between ob-

servations. For example, daily temperatures can be used to construct a time series with a

�xed 24-hours time period. Time series are used in the �eld of Economics to model param-

eters such as Gross Domestic Product, Consumption and Gross National Investment over

a period of time [47]. Time series can also be used to forecast economic indicators. This

can be achieved by looking at a leading indicator or variable that precedes and correlates

to another variable being investigated. With a higher correlation between the leading

indicator and the investigated variable, better accuracy in forecasting the investigated

variable is achieved.

Tra�c captured using network telescope sensors can also be represented in a time series.

The reason for this is that packets are associated with a datetime stamp. The datetime

stamp �eld, found in the database schema, records the time at which a packet is received.

Having a time-based packet capture system allow one to attach observations (packet

counts) to a speci�c period (either daily, monthly or hourly). Constructed time series

55
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allows the researcher to conduct advanced correlation analysis between multiple variables

or simply between the same variable at di�erent time lags. Activity plots (daily and

hourly packet counts) used previously were generated by graphing the time series that

were generated from network telescope's tra�c.

5.1 Interpreting the Results

In conducting a correlation analysis of network telescope activity, the correlation coe�-

cient for auto-correlation and cross-correlation functions was used. As discussed in Section

2.9, auto-correlation and cross-correlation methods are used to test for correlations in a

generated time series. The correlogram plots showing correlation coe�cients at di�erent

time lags are also used to interpret correlation results. Correlation coe�cients are used

to quantitatively assess and compare the degree of relativity between two generated time

series variables.

5.1.1 Cross-correlation Coe�cient and the Auto-correlation Co-

e�cient

The coe�cient (r) of both auto-correlation and cross-correlation functions is a calculated

value bound between -1 and 1. The value of r = ±1 represents a perfect correlation, that

is, either a positive or a negative relationship. If the coe�cient is zero, it indicates that

there is no correlation or relationship between the variables. Because there are di�erent

categorisations of correlation coe�cients, it can be di�cult to interpret and categorise

correlation coe�cient values. However, coe�cients can generally be categorised as follows:

r ≤ 0.35 is usually considered weak or low correlation; 0.36 ≤ r ≤ 0.67 is considered

moderate correlation; and 0.68 ≤ r ≤ 1 is strong or high correlation [48]. In this regard,

Table 5.1 shows full categorisation of correlation coe�cients that were adopted in this

research project.

Although not ideal, one can employ a technique that computes cross-correlation and auto-

correlation of two variables with missing points, such as simply passing over the missing

values [24]. The challenge with passing over values, especially with regard to the auto-

correlation of time series, is that time intervals become distorted with missing values.

Depending on the level of granularity of the time series, short disruptions such as missing

hourly packet capture can be expected. Disruptions can be caused by various network
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Table 5.1: Categories of correlation coe�cients

Category Correlation coe�cient values

weak positive (negative) relationship 0 to 0.35 (0 to -0.35)
moderate positive (negative) relationship 0.36 to 0.67 (-0.36 to -0.67)
strong positive (negative) relationship 0.68 to 1.0 (-0.68 to -1.0)

Figure 5.1: Correlogram example

interruptions such as outages borne by the service provider. In this regard, in analysing

hourly time series, a passing of missing values method is used. At a daily interval, a

full-set of data points is available for the period under investigation (20 May 2011 to 20

May 2012) across the four telescopes. Moreover, as noted previously, the researcher has

six months of data points for telescope 196-b.

5.1.2 The Correlogram

Part of correlation analysis requires an understanding of the correlogram used to plot

both the auto-correlation function and cross-correlation function. The correlogram shows

the distribution of the correlation coe�cient within the maximum speci�ed time lag.

The correlogram plot (example shown in Figure 5.1) shows the time lag on the x-axis and

the correlation coe�cient values on the y-axis. For the purposes of this research, the lag

is the time period between series values and it can either be daily or hourly lag based on

the time period under investigation. For example, when analysing the daily packet count,

the lag will be a day. While similarly, for an hourly packet count the lag will be an hour.

The correlogram is constructed with a 95% con�dence interval. The con�dence interval is
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Table 5.2: Con�dence intervals for hourly and daily correlograms

daily time series hourly time series

Year [-0.1;0.1] [-0.02;0.02].
Six Months [-0.14;0.14] [-0.023;0.023]

shown by dotted lines on the correlogram and highlights the reliability of the coe�cient's

estimate. In the correlogram, if the correlation coe�cient lies outside the dotted lines

then the null hypothesis of the coe�cient being zero can be rejected [8]. If the correlation

coe�cient is zero then, the correlogram is normally distributed with a mean of − 1
n
and

variance of 1
n
. The 95% con�dence interval of a normal distribution is given by the mean

±2 standard deviations [8]. In this regard, the 95% con�dence interval is calculated using

the following formula:

1

n
± 2√

n
(5.1)

Using Equation 5.1, the con�dence intervals (the lower con�dence limit interval and upper

con�dence interval limit) are presented in Table 5.2 for various time periods (n). To

calculate the con�dence interval using a daily packet count time series, n will equal 365

days to account for a full year. Looking at hourly packet count time series, the value of

n will be 8760. Con�dence intervals for a six-month dataset are shown to accommodate

telescope sensor 196-b which contains six months' worth of data. The con�dence intervals

are represented by dotted lines on the correlogram.

For auto-correlation, lag 0 is always 1 since auto-correlation analysis investigates the

correlation of a variable with itself in di�erent time lags. At time lag 0 the function

auto-correlates with itself.

5.2 Long-range Correlation Analysis

Before investigating the correlation between two time series, it is important to �rst estab-

lish whether there are repeating patterns on the time series constructed from the sample

dataset. Therefore, to investigate long-range (auto) correlation (i.e. whether the time

series cross-correlates with itself in two di�erent points in time), the researcher makes use

of the auto-correlation function.
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5.2.1 Auto-correlation Analysis

The auto-correlation function is extended from a covariance function. Covariance func-

tions are used to study correlation between two variables. Given two variables (x and y),

the sample covariance is de�ned as follows [23]:

Cov(x, y) =

∑
(xi − x̄)(yi − {ȳ})

n− 1
(5.2)

with x̄and ȳ de�ned as the sample mean:

x̄ =

∑
xi

n
; ȳ =

∑
yi

n
(5.3)

Following from this, the sample correlation coe�cient (ρ) is de�ned as follows:

ρ =
Cov(x, y)

sd(x)sd(y)
(5.4)

The sample standard deviation is the square root of the variance and, as such, sd (x) and

sd (y) are de�ned as follows:

sd(x) =

∑
(xi − x̄)2

n− 1
; sd(y) =

∑
(yi − ȳ)2 (5.5)

Therefore, to calculate the auto-correlation covariance of a time series (x) with (t) as the

time period of the series and (k) as the lag between the series, the following function is

used [8]:

ck =
1

n

t−k∑
t=1

(xt − x̄)(xt+k − x̄) (5.6)

By normalising ck, researchers can compute the auto-correlation coe�cient with bound

values between -1 and 1. The normalising function is simply c0 (cross correlation covari-

ance at 0 time lag) [8]. The auto-correlation coe�cient is de�ned as:

ρ =
ck
c0

(5.7)



5.2. LONG-RANGE CORRELATION ANALYSIS 60

Listing 1 Auto-correlation function de�nition

ac f (x , l ag .max = NULL, type , p l o t = TRUE, na . ac t i on . . . )

x −> un iva r i a t e or mu l t i v a r i a t e v a r i a b l e
l ag .max −> maximum lag to t e s t f o r c r o s s c o r r e l a t i o n
p l o t −> i f s e t to true , a p l o t i s produced
na . ac t i on −> func t i on to handle miss ing va lue s ( na . f a i l /na . pass )

155-a 146-a

Figure 5.2: Auto-correlation correlograms of sensors 155-a and 146-a using daily packet
counts

To determine the auto-correlation function and produce the plots, R Statistic's �acf�

function is used. The �acf� function is described in Listing 11 [51] .

The correlogram is used to check if the series is correlated with itself in di�erent time

lags. The auto-correlation coe�cient is plotted on the y-axis and the x-axis represents

the time lags. Essentially, if the series is has no repeating patterns, the auto-correlation

coe�cient at time lags greater than 0 should be close to zero.

By using the auto-correlation method to analyse the generated series, results showed that

the daily packet counts time series across category A do not show repeating patterns

beyond a lag period of more than 1, as observed auto-correlation coe�cients are less than

0.36 at time lag greater than 1. The auto-correlation correlograms of 196-a, 196-b and

196-c are contained in Appendix D. Sensor 155-a has a particularly interesting correl-

ogram (shown in Figure 5.2); as it displays a gradual decay with moderate correlation

coe�cient and repeated peaks marked with alphabets (�A�, �B�, �C� and �D�). The mod-

erate correlation coe�cient (until lag 11 for sensor 155-a) and the gradual decay are an

indication of repeated patterns [8]. Sensor 146-a (Figure 5.2) does show repeated peaks,

1De�nition of parameters that are used in this research
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Figure 5.3: Auto-correlation correlogram of sensor 196-a using hourly packet count

however, beyond the time lag of 2 the correlation coe�cient is weak.

When conducting an analysis of the hourly packet count time series, although weak cor-

relation coe�cients are obtained, it is observed that there are repeating and diminishing

patterns every 24 hours with correlation coe�cients declining as the time lag increases.

This is illustrated by Figure 5.3 which shows a correlogram with a maximum lag of 168

hours (this represents a week's worth of lag). Results presented in Figure 5.4 show that

the 24-hourly pattern is observed across category A telescopes sensors thereby providing

evidence of 24-hour cyclical network telescope tra�c activity.

Category B sensors simply demonstrate a decline of correlation coe�cients with no 24-

hourly cycles. Category B sensors, particularly sensor 155-a, show evidence of repeated

daily tra�c patterns. However, category A sensors show repeated 24-hour cycles with

weak correlation coe�cient observed. The 24-hourly cycles are related to Con�cker worm

scanning as shown in Figure 5.5. The correlogram shows Con�cker-related tra�c only (i.e.

port 445/tcp) using the hourly packet count of sensor 196-a. Other category A sensors

(196-b and 196-c) show similar results and can be viewed in Appendix E. The correlation

coe�cients at the peaks of the correlogram are in the strong category showing that the

time series auto-correlates in 24-hourly intervals. The actual auto-correlation coe�cients

are also contained in Appendix E.
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196-b 196-c

146-a 155-a

Figure 5.4: Auto-correlation correlogram of sensors 196-b, 196-c, 146- and 155-a using
hourly packet count

Figure 5.5: Auto-correlation correlogram of sensor 196-a using hourly packet counts on
port 445/tcp
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5.3 Cross - Correlation Analysis

Having multiple telescope sensors, allows the researcher to access multiple series of data

captured across the same period of time. As highlighted in Section 2.9, a cross-correlation

method is used to investigate correlation (i.e. estimate the degree to which two time series

are related) across multiple variables. To conduct a cross-correlation analysis, a number

of parallel time series across the telescope sensors datasets are constructed.

The cross-correlation function can be seen as an extension of the auto-correlation function

5.6 in Section 5.2. Instead of having the same variable with di�erent time lags; now there

are two time series variables. Therefore, given two time series (x and y), the cross-

correlation covariance function can be de�ned as follows [8]:

ck(x, y) =
1

n

n−k∑
t=1

(xt+k − x̄)(yt − ȳ) (5.8)

Time lag (denoted as k on Equation 5.8) is important when examining logically distant

network telescopes, taking into account the network delays and the proximity of the nodes

to source machines. This ensures that a test for cross-correlation can be conducted even

with lags between the sensors.

Similar to auto-correlation, the cross-correlation coe�cient is calculated by normalising

the auto-correlation covariance ck(x, y) such that the coe�cient is bound between -1 and

1 (similar to auto-correlation covariance). The normalising function is de�ned as follows:

z =
√

c0(x, x)c0(y, y) (5.9)

Therefore, cross-correlation coe�cient is de�ned as follows:

ρ =
ck(x, y)

z
(5.10)

R Statistical package has an implementation of the cross-correlation function (�ccf�), which

is used to calculate the cross-correlation coe�cient of two variables. R Statistics' imple-

mentation of cross-correlation is described in Listing 2 [51]:
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Listing 2 Cross-correlation function de�nition

c c f (x , y , p lot , na . act ion , . . . )

x , y −> Univar ia te v a r i ab l e ( numeric vec to r or matrix )
p l o t −> I f s e t to true , a p l o t i s produced
na . ac t i on −> Function to handle miss ing va lue s ( na . f a i l /na . pass )

5.3.1 Daily Packet Counts - Time Series

Two time series are constructed to cater for variables X1 and X2. Since the daily packet

counts' time series does not contain missing values, the 'na.action' is left with default

values such that the computation halts in the case of missing values. The experiment

tests cross-correlation against a combination of telescope sensors' tra�c. Results in

cross-correlation analysis will also be presented in a cross-correlation matrix. The cross-

correlation matrix will be presented in the following syntax:

(+|−)coefficient(l = x) ⋆ {⋆} (5.11)

Where:

• +/- sign indicate whether or not there is a positive relationship (positive or negative

coe�cient)

• x is the maximum coe�cient achieved

• rating can either be:

� ⋆ for weak correlation;

� ⋆⋆ for moderate correlation;

� ⋆⋆⋆ for strong correlation; or

� blank for values below 95% con�dence interval.

The cross-correlation results contained in Table 5.3 supports the previously observed

results, achieved through summarisation and basic statistics, in addition to the graphical

tra�c activity plots. Results show that sensors 196-a, 196-b and 196-c (de�ned as category

A) have a moderate correlation coe�cient ranging from 0.45 to 0.55. There is relativity
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Table 5.3: Cross-correlation matrix - daily packet count

196-a 146-a 155-a 196-b

146-a - 0.132 (l = 5) ⋆ �� �� ��
155-a +0.200 (l = 0) ⋆ +0.454 (l = 4) ⋆⋆ �� ��
196-b +0.523 (l = 0) ⋆⋆ +0.407 (l = 0) ⋆⋆ +0.274 (l = 13) ⋆ ��
196-c +0.546 (l = 0) ⋆⋆ - 0.126 (l = 13) ⋆ +0.233 (l = 0) ⋆ +0.450 (l = 0) ⋆⋆

between sensors 146-a and 155-a (de�ned as category B) with a cross-correlation coe�cient

of 0.44. However, the cross-correlation coe�cient between telescope nodes in category A

and category B is considered weak for all experiments except for the correlation between

146-a and 196-b, which demonstrates a moderate relationship.

Figure 5.6 illustrates correlograms for category A comparison (196-a vs. 196-c) as well

as category B comparison (146-a vs. 155-a). For a comparison of sensor 196-a vs. sensor

196-c, the diagram shows a distinct peak at time lag of 0. In contrast, the comparison

of sensor 146-a vs. sensor 155-a shows gradual peaks, not a distinct peak, with two

slightly close peaks at time lag of 0 and time lag of 4. At time lag 0, the cross-correlation

coe�cient is 0.444 and at time lag 5 the coe�cient is 0.454 (slightly higher). Between the

time lag of -6 and +5, all coe�cients are in the moderate category. This indicates that

the two series, at speci�ed time lags, correlate uniformly.

196-a vs. 196-c 146-a vs. 155-a

Figure 5.6: Cross-correlation correlogram of sensor 196-a vs. 196-c (A) and sensor 146-a

vs. 155-a (B) using daily packet count

Considering the amount of interplay of events that occurs because of sensors and gen-

eral Internet clutter, the results achieved provide evidence of relativity of tra�c in both
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categories. In addition to the time series correlation analysis, when pro�ling gathered

datasets in Section 3.2, the researcher observed signi�cant similarities between category

A sensors in the following areas:

• Total packet counts for the 12-month period were identical.

• Although logically distant, all three telescope sensors were placed in the same pre�x.

• The neighboring IP address blocks were smaller and, predominantly, in developing

countries.

These factors do seem to provide additional evidence for the cross-correlation of sensors in

category A. Category B's similarities can be attributed to the following (also highlighted

in Section 3.2):

• Similar and lower (when compared to category A) total packet counts across the

12-month period.

• Larger neighboring IP block assignments on the same high-order pre�x as category

B's sensors.

• Earlier provision of IP addresses (compared to category A) with larger apportions

of IP space.

• Telescopes IP ranges outside Con�cker's range due to a fault in the random number

generator.

Apart from examining all tra�c without distinction, further correlation analysis of di�er-

ent types of tra�c is required. This will ensure that correlation tests can be conducted

based on major tra�c types (TCP, UDP and ICMP) and, therefore, one can test to see

which tra�c types achieve better correlation between sensors.

5.3.2 TCP Tra�c Time Series

In a previous analysis, the �rst series constructed was the daily packet count by simply

using a bin size of 24 hours and counting the number of packets received in each bin. To

study the underlying variables, the daily packet count was �ltered to consider TCP packets

only. Other tra�c types will be examined in the sections that follow. The newly generated
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Table 5.4: Cross-correlation matrix - daily TCP packet count

196-a 146-a 155-a 196-b

146-a -0.224 (l = 9) ⋆ �� �� ��
155-a +0.287 (l = 0) ⋆ +0.443 (l = 4) ⋆⋆ �� ��
196-b +0.820 (l = 0) ⋆⋆⋆ +0.340 (l = 5) ⋆ +0.278 (l = 16) ⋆ ��
196-c +0.760 (l = 0) ⋆⋆⋆ -0.242 (l = −10) ⋆ +0.321 (l = 0) ⋆ +0.860 (l = 0) ⋆⋆⋆

datasets of only TCP packets went through similar cross-correlation experiments. The

results are presented in Table 5.4.

The �rst thing to observe is the movement from moderate to strong cross-correlation

coe�cients with a maximum value of 0.86 between sensor 196-b and sensor 196-c. In

Section 4.1.2, results showed that sensors 196-a, 196-b and 196-c TCP packet proportions

were above 90%. By removing less than 10% of the tra�c, the cross-correlation results

have improved signi�cantly. Looking at category B (146-a and 155-a), it is observed

that the sensor's relativity is still categorised as moderate with a minute decline of the

coe�cient: from 0.454 with all tra�c to 0.443 with only TCP tra�c.

Figure 5.7, shows the correlogram of sensor 196-a vs. sensor 196-b as well as sensor 146-a

vs. sensors 155-a. An initial observation of sensor 196-a vs. sensor 196-b reveals that the

correlogram resembles a normally distributed function. There is a clear distinct peak at

the time lag of zero. The correlogram of 146-a vs. 155-a shows a gradual decline as the

time lag increases with two high peaks at lag 0 and lag 4. The double peaks are similar

to the experiment conducted earlier that showed all tra�c types. Appendix G contains

other comparisons of the sensor combination.
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Table 5.5: Cross-correlation matrix - daily TCP packet count with SYN �ag on

196-a 146-a 155-a 196-b

146-a -0.237(l = 9) ⋆ ↑ �� �� ��
155-a +0.262 (l = 0) ⋆ ↓ +0.448 (l = 4) ⋆⋆ ↑ �� ��
196-b +0.813 (l = 0) ⋆⋆⋆↓ +0.136(l = 5) ⋆ ↓ +0.272 (l = 16) ⋆ ↓ ��
196-c +0.754 (l = 0) ⋆⋆⋆↓ -0.250 (l = −10) ⋆ ↑ +0.293 (l = 0) ⋆ ↓ +0.858 (l = 0) ⋆⋆⋆↓

196-a vs. 196-b 146-a vs. 155-a

Figure 5.7: Cross-correlation correlograms of sensor 196-a vs. 196-b (A) and 146-a vs.

155-a (B) using daily TCP packet count

With improved correlation results obtained by only analysing TCP tra�c, the next ex-

periment focuses on TCP packets that have a SYN �ag set. Packets with SYN �ag set are

classi�ed as active, meaning that a response would be required from the network telescope

[16]. Therefore, the aim of the experiment is to test if there are further improvements to

correlation by re�ning TCP tra�c. Table 5.5 shows the cross-correlation matrix of TCP

packets with the TCP SYN �ag set. Arrows are used to indicate whether results have

improved when compared to previous results illustrated in Table 5.4 (all TCP tra�c). Re-

sults highlight that cross-correlation coe�cients using active TCP packets are marginally

a�ected. For example, the cross-correlation coe�cient for the comparison of sensor 196-b

vs. sensor 196-c has decreased from 0.8600 to 0.858. The reason for this is that inactive

TCP packets' total share of all TCP packet count is small (1.5% for all tra�c observed

in all �ve sensors) and, therefore, a lesser in�uence on the total daily packet count (TCP

only) variable. Although it is important to consider active packets when analysing ma-

licious activity, by removing inactive tra�c the results show only a marginal e�ect on

correlation of tra�c.
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Table 5.6: Cross-correlation matrix - daily UDP packet count

196-a 146-a 155-a 196-b

146-a +0.187 (l = −17) ⋆ �� �� ��
155-a +0.098 (l = 0) +0.336 (l = 4) ⋆ �� ��
196-b +0.348 (l = −1) ⋆ +0.570 (l = −1) ⋆⋆ +0.276 (l = −5) ⋆ ��
196-c +0.053 (l = −19) +0.103 (l = −3) ⋆ +0.105 (l = 0) ⋆ +0.062 (l = −4)

Table 5.7: Cross-correlation matrix - daily UDP packet count

196-a 146-a 155-a 196-b

146-a +0.609 (l = 0) ⋆⋆ �� �� ��
155-a +0.653 (l = 0) ⋆⋆ +0.699 (l = 0 ⋆⋆⋆ �� ��
196-b +0.818 (l = 0) ⋆⋆⋆ +0.330 (l = 0) ⋆ +0.422 (l = 0) ⋆⋆ ��
196-c +0.853 (l = 0) ⋆⋆⋆ +0.676 (l = 0) ⋆⋆⋆ +0.711 (l = 0) ⋆⋆⋆ +0.810 (l = 0) ⋆⋆⋆

5.3.3 UDP Tra�c Time Series

Section 4.1.2 demonstrated that UDP accounts for less than 10% of total packet share

across category A. For category B, it is noted that UDP accounts for a larger share with

15% and 25% for sensor 155-a and sensor 146-a respectively.

Table 5.6 shows the results of cross-correlation experiments with UDP packets constructed

using daily packet counts. Results demonstrate that there is a weak correlation between

sensors in category A. Correlation between sensor 146-a and sensor 155-a, in category B,

is also considered weak. As an anomaly, the cross-correlation coe�cient of sensor 196-b

vs. sensor 146-a falls in the moderate category. Looking at a correlogram in Figure 5.8,

which shows the cross-correlation function between sensor 146-a and sensor 155-a, it is

observed that the correlogram has a number of peaks and troughs. Results suggest that

UDP tra�c is less relative as compared to the previous experiment on TCP tra�c.

During the UDP port analysis section the presence of uncoordinated anomalous spikes

was examined in detail. It evident that there was a signi�cant presence of these spike

attacks to uncommon UDP ports with signi�cant packet build-up in a short space of time

that targeted a single sensor. These random sensor attacks were uncoordinated across the

telescopes and are responsible for the lower correlation results achieved in this experiment.
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Figure 5.8: Cross-correlation correlograms of sensor 146-a vs. 155-a using daily UDP
packet count

5.3.4 ICMP Tra�c Time Series

Figure 5.7 contains the cross-correlation analysis of ICMP tra�c The results show mod-

erate to strong correlation across all network telescope sensors' combinations except for

sensor 146-a vs. sensor 196-b. These results were consistently obtained regardless whether

the analysis occurred in a single category or across categories. A peak at the time lag of

zero can be observed, however, the correlograms of all sensors demonstrated uniformity

across the di�erent time lags. Figure 5.9 shows the cross-correlation function of sensor

196-a vs. 196-c (category A) and sensor 146-a vs. 155-a (category B). Both correlograms

shows the highest coe�cient at time lag 0 but the adjacent lags are all in the moderate

category. Appendix I contains correlograms of other comparisons.

The shape of the correlograms constructed provide evidence of uniform tra�c being ob-

served across the sensors. Similarly, the moderate to high correlation coe�cient observed

indicates that, irrespective of category, ICMP tra�c shows that there are similarities

across the sensors.
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196-a vs 196-c

146-a vs 155-a

Figure 5.9: Cross-correlation correlograms of sensor 196-a vs. 196-c and 196-a vs. 146-a
using daily ICMP packet count
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Table 5.8: Cross-correlation matrix - daily packet count for tra�c without port 445/tcp

196-a 146-a 155-a 196-b

146-a +0.336 (l = −5) ⋆ ↑ �� �� ��
155-a +0.541 (l = 0) ⋆⋆ ↑ +0.446 (l = 0 ⋆⋆ ↑ �� ��
196-b +0.872 (l = 0) ⋆⋆⋆ ↑ +0.185 (l = 5) ⋆↓ +0.298 (l = 0) ⋆ ↑ ��
196-c +0.843 (l = 0) ⋆⋆⋆ ↑ +0.381 (l = 5) ⋆⋆ ↑ +0.586 (l = 0) ⋆⋆ ↑ +0.872 (l = 0) ⋆⋆⋆ ↑

5.3.5 Non-445/TCP Time Series

Section 4.2 demonstrated the in�uence of port 445/tcp (used by Con�cker) and its impact

on sensor tra�c activity. In previous plots showing tra�c without TCP tra�c, relativity

was visually observed across all sensors. This section conducts a cross-correlation analysis

of non-Con�cker tra�c. This is achieved by removing all tra�c targeting port 445/tcp and

then constructing a time series. This experiment was conducted with a view to study how

relative tra�c would be without the in�uence of Con�cker and related 445/tcp scanning.

The results of cross-correlation calculations are captured in Table 5.8. Arrows are used to

show the comparison between results obtained in this experiment and the initial results

captured in Figure 5.3. When comparing the initial results obtained, with all tra�c types

and tra�c without port 445/tcp tra�c, improved correlation results across all telescope

sensor combination were obtained, with the exception of sensor 146-a vs. sensor 196-b.

Category A sensors achieved the highest correlation coe�cient ranging between 0.843 and

0.872. Although results show three weak correlation comparisons, it is also important to

note that the other seven comparisons are in medium to strong correlation irrespective

of category. It is also signi�cant that, even with weak categorisations, the coe�cients

are not as low as the previous analysis. Sensor 146-a and 155-a (category B) are outside

Con�cker's range and the results of this experiment a�rm this. In this regard, results

show only a minimal improvement of the cross-correlation coe�cient from 0.444 (obtained

in previous results) to 0.446 for sensor 146-a vs. sensor 144-a comparison.

5.3.6 Time Series - Destination IP Address

Previous work on 256 IP address block (small /24 telescope sensors) conducted has shown

a clear disjunction on packet count per IP for destination IP's below x.x.x.127 and those

greater than x.x.x.127 [16]. Similarly, using annual datasets between the selected period

(20 May 2011 to 20 May 2012) in Appendix H, plots show the distribution of packets

across IP addresses.
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Table 5.9: Cross-correlation matrix - tra�c with destination IP address above x.x.x.127

196-a 146-a 155-a 196-b

146-a +0.348 (l = 0) ⋆ �� �� ��
155-a +0.460 (l = 0) ⋆⋆ +0.556 (l = 0) ⋆⋆ �� ��
196-b +0.698 (l = 0) ⋆⋆⋆ +0.141 (l = 5) ⋆ +0.254 (l = 11) ⋆ ��
196-c +0.686 (l = 0) ⋆⋆⋆ +0.321 (l = 0) ⋆ +0.419 (l = 0) ⋆⋆ +0.810 (l = 0) ⋆⋆⋆

This experiment extracts the upper half of the /24 IP space (looking for IP addresses

between x.x.x.127 and x.x.x.255) and looks at daily packet counts across network tele-

scope sensors. Since it is known that the selected destination IP addresses are outside of

Con�cker's automated scanning range, it is possible to remove the in�uence of automated

scans [18]. This is di�erent from the experiment in Section 5.3.5 as the unreachable ad-

dresses were simply excluded while still observing other tra�c routing to 445/tcp. This

allowed the researcher to look at all tra�c across all ports and packet types while focusing

on a limited destination address range.

The results of the cross-correlation experiment are shown in Figure 5.9. Results show a

strong correlation between category A sensors. Although correlation between sensors in

category B is moderate, improvements can be observed with a cross-correlation coe�cient

of 0.556. These results indicate that, with Con�cker's automated scans removed, relativity

of sensors in each category is observed.

5.4 Hourly Packet Count Analysis

Thus far research has been conducted using daily bin sizes for correlation analysis. In

this section the researcher aims to reduce granularity and look at hourly bin sizes to

conduct cross-correlation calculations. The challenge with hourly bin sizes is that there

are missing values and, as previously indicated, cross-correlation analysis is sensitive to

missing values thus one needs to treat missing values.

Table 5.10 shows the hourly outages for the entire selected year period2. Due to the vast

amount of packets that sensors receive daily, a conservative assumption was made: should

the network telescope sensor not receive a packets for an entire hour; it is assumed that

there was an outage. These minimal hourly outages can be attributed to a number of

factors such as regional outages with service providers. No telescope sensor (apart from

2Considering six months period for Sensor 196-b
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Table 5.10: Telescope sensor's hourly downtime for the 12 month period

Telescope Total downtime (hours) Up-time

196-a 31 hours 99.65%
146-a 39 hours 99.57%
155-a 12 hours 99.86%
196-b 0 hours 100%
196-c 1 hour 99.99%

Table 5.11: Cross-correlation matrix - hourly packet count for all packet types

196-a 146-a 155-a 196-b

146-a +0.029 (l = 5) ⋆ �� �� ��
155-a +0.089 (l = 0) ⋆ +0.127 (l = 0) ⋆ �� ��
196-b +0.364 (l = 0) ⋆⋆ +0.219(l = −32) ⋆ +0.067 (l = 0) ⋆ ��
196-c +0.320 (l = 0) ⋆ - 0.027 (l = 10) ⋆ +0.089 (l = 1) ⋆ +0.320 (l = 0) ⋆

196-b) had a full day outage. The hours reported on the table are not contiguous but

rather spread across the entire period. In a full year (with 8785 hours), the highest outage

experienced in one sensor was 39 hours. A total of 83 hours of downtime in all sensors

was observed.

By default, missing values are not allowed in computing cross-correlation coe�cients.

However, it is possible to simply pass through missing values by setting �na.pass� on the

'na.action' input parameter. Table 5.11 shows the hourly cross-correlation analysis of

the �ve sensors. The �rst observation is that all sensors, except 196-a vs. 196-c, have

weak correlation results. Furthermore, when comparing hourly packet counts with daily

packet counts of all packet types, the cross-correlation coe�cients were signi�cantly lower.

Although the number of missing values does play a role on correlation coe�cient, these

results obtained show that increasing the resolution and looking at hourly tra�c activity

does not yield better correlation results.

5.5 Summary of Findings

This chapter focuses on using advanced correlation analysis to test for relativity in sen-

sor activity. Having tra�c captured with related time stamps allowed the researcher to

construct a number of time series. Auto-correlation and cross-correlation of time series
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analysis were used. The results of the correlation analysis were presented with correlo-

grams and their respective cross- or auto-correlation coe�cients.

5.5.1 Auto-correlation Results

Using the auto-correlation technique to determine whether a time series correlates with

itself in di�erent time lags (i.e. repeated patterns), it was observed that category A

sensors have weak auto-correlation (i.e. no repeating patterns) using daily packet counts.

Sensor 155-a showed a particularly interesting repeated decaying pattern with strong to

moderate auto-correlation coe�cient until a time lag of 11. Sensor 155-a also had a

similar decaying pattern, however, the cross-correlation coe�cients were much lower and

at a time lag beyond 2 they were weak. Similarly, looking at an hourly packet count,

the correlograms for category A showed repeated and diminishing cycles every 24 hours,

although the correlation coe�cient beyond time lag of 2 was weak. Looking at port

445/tcp, 24-hourly cycles were observed with strong auto-correlation coe�cients every 24

hours thereby showing evidence of Con�cker's cyclical scanning patterns.

5.5.2 Cross-correlation Results for All Tra�c

Following from auto-correlation experiments, the cross-correlation method was used to

test for correlation of two variables (i.e. two time series). Initial results, looking at packet

counts of all packet types, a�rmed the results shown in Section 4.1 and indicated the

relativity of network tra�c activity across category A sensor's combination. Similarly,

category B sensors showed relativity. The cross-correlation coe�cient fell in the moderate

bracket in this experiment for comparisons in each category. Although these results did

not initially contain coe�cients greater than 0.67 (i.e. strong correlation), given the

amount of interplay and anomalous spikes, the results were encouraging and allowed the

researcher to study the underlying variables further. When comparing combinations of

category A sensors with category B sensors, results showed weak cross-correlation.

5.5.3 Cross-correlation Results for Major Protocols

Having statistically demonstrated evidence of cross-correlation across category A and cat-

egory B sensors, an investigation of the underlying similarities was conducted by looking

at di�erent types of tra�c separately.
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Looking at TCP tra�c only, category A TCP cross-correlation analysis results were in

the strong bracket with the cross-correlation coe�cient between 0.76 to 0.86. Given the

signi�cant amount of tra�c being analysed and the fact that category A sensors are not

adjacent to each other on the 196 pre�x, the results achieved showed high relativity. Since

TCP tra�c accounts for above 90% of category A's tra�c, by simply removing 10% of

the tra�c the cross-correlation coe�cient moved from moderate to strong. Correlograms

of category A comparisons resembled a normal distribution with a clear distinct peak at

time lag of 0. Category B sensors however remained in a moderate category achieving

only 0.4 cross-correlation coe�cient between the sensors. Looking at active TCP tra�c,

results showed that there was a slight, negligible decrease of the correlation coe�cients.

This was due to the small amounts of inactive packets observed.

Results obtained in looking at UDP tra�c results were mixed and uncategorised. Al-

though most of category A cross-correlations were weak (some even insigni�cant), a few

moderate correlations were reached, even across categories. The poor results achieved

were mainly caused by the anomalous spikes investigated in Section 4.1. The anomalous

spikes were uncoordinated and focused on one sensor at a time.

ICMP tra�c results showed that tra�c activity across all sensors (irrespective of category)

showed moderate to strong correlation. Interestingly, by analysing the correlograms it was

shown that ICMP tra�c was uniform. Although at time lag of 0 there were clear peaks,

neighbouring time lags also showed relatively similar but slight lower cross-correlation

values.

5.6 Summary

This chapter implemented auto- and cross-correlation methods to conduct advanced cor-

relation analysis using time series. By using the auto-correlation function, experiments

were conducted to test if each of the generated time series auto-correlates. Category A

sensors showed evidence of repeated 24-houly cycles due to the Con�cker worm.

The second part of the chapter focused on implementing the cross correlation method

to test sensor combinations relativity. The cross-correlation function showed moderate

correlation in each category when looking at all tra�c. Results were improved signi�-

cantly when looking at TCP tra�c and strong correlation in category A's comparisons

were calculated. Category B's comparisons remained in the moderate category for TCP

tra�c. Implementing the cross-correlation function using UDP tra�c showed mixed and
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uncategorised results but mainly results were in the weak category. The cross-correlation

function showed that coe�cients of ICMP tra�c were uniform irrespective of category.

This chapter quantitatively analysed the correlation of tra�c activity for all the sen-

sors. The next chapter provides a conclusion to the research project by providing a brief

overview of the work done and examining the project's objectives.



Chapter 6

Conclusion

This chapter summarises the research project by providing an overview of the work con-

ducted and the outcomes thereof. The chapter also revisits the objectives and goals that

were set for the project at the outset. When revising the objectives, the extent to which

the project's goals were met is examined. The last section discusses the potential future

extension of the research project.

6.1 Overview of Research Project

This research project focuses on correlation analysis of tra�c activity observed in �ve

/24 network telescopes. To develop a foundation, the project focused on comparative

analysis of tra�c generated by the telescopes. Building on this foundation, an advanced

correlation analysis of tra�c activity across the �ve sensors was conducted.

6.1.1 Preliminary Analysis of Datasets and Location of Sensors

The research project was introduced by discussing datasets and conducting analysis of the

logical and physical location of network telescopes. With a selected period of a year, results

obtained showed that datasets generated by category A sensors (196-a, 196-b and 196-c)

had similar higher packet counts when compared to the lower packet counts observed

in category B (146-a and 155-a) datasets. Consequently, the researcher proceeded to

conduct a detailed analysis of the logical location. It was revealed that, although sensors

78



6.1. OVERVIEW OF RESEARCH PROJECT 79

were relatively logically distant (not logically next to each other); sensors in category A

were closer to each other. The reason for this is that Category A sensors are placed on

the same high-order IP pre�x (pre�x 196).

The in-depth analysis of IP pre�x location (both physical and logical) using the Regional

Internet Registry, provided further insight into the legacy of IP assignments that aided

the researcher in the categorisation of the sensors. The high-order IP pre�x, in which

category A sensors were placed, had most apportions in Africa. Conversely, apportions in

high-order IP pre�xes, in which category B sensors were placed, were mainly in the United

States. Results showed that category A sensors were placed in a high-order IP pre�x with

predominantly smaller IP address blocks whereas category B's high-order pre�xes had

larger IP address blocks. Larger IP address block assignments are more likely to belong

to large enterprises while smaller assignments are more likely to be found in an �end-user�

environment, which tends to be more susceptible to malicious activity. Moreover, larger

corporations are likely to have higher information security maturity.

6.1.2 Comparative Analysis Using Summarisation

Having built a pro�le of datasets (logical and physical location, size, legacy IP assign-

ments), the research project proceeded to conduct a comparative analysis of tra�c ob-

served across the �ve sensors. Iteratively, through summarisation techniques and the use

of graphical plots, a number of similarities were observed in each category. Time series'

of tra�c activity, as well as their respective plots, were generated. Generated plots with

all tra�c types, showed similarities in tra�c activity in each category of sensors.

The results from the graphically observed data were encouraging, which led the researcher

to continue to investigate di�erent types of tra�c separately. Apart from similarities in

the distribution of packets across the major protocols in each category of telescope sensors,

further category-speci�c similarities were observed. In analysing TCP tra�c, the in�uence

of Con�cker worm was observed as a contributor, among other sensor location factors, in

the categorisation of sensors. Random number generator errors in Con�cker meant that

category B sensors were unreachable by the worm's automated scanning. The examination

of UDP tra�c, by looking at top ports, revealed that the tra�c contained a number of

anomalous spikes which resembled denial-of-service attacks. Because these anomalous

spikes were uncoordinated, they caused the �uctuation in the relativity of UDP tra�c

activity when comparing di�erent sensors. Comparative analysis of ICMP tra�c showed

evidence of similarities of tra�c across all sensor combinations irrespective of the category.
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Basic statistical methods also supported the initial observations of the categorisation of

sensors presented, by showing similar spreads and centrality in each category.

6.1.3 Implementing Advanced Time Series Correlation Methods

Subsequent to the comparative analysis, that used summarisation and basic statistics,

tests for correlation in tra�c activity using advanced correlation analysis were conducted.

At �rst instances, tests on whether there are repeating patterns in each generated time

series (representing tra�c activity of each sensor) were conducted. Time series were

generated using a daily time period. Results of the daily time series showed that the series

do not auto-correlate because of the resulting weak correlation coe�cient calculated. At

an hourly time interval, although the correlation coe�cient was weak, examination of

the correlogram showed evidence of diminishing cycles in every 24 hours of tra�c. The

next step focused on testing for correlation across all sensor combinations using cross-

correlation method Time series were generated by �rstly, looking at all tra�c types and,

secondly, re�ning the time series and studying di�erent major TCP, UDP and ICMP

tra�c separately. Time series excluding the 445/tcp port were also generated, as well as

studies of IP ranges outside Con�cker's reach. The following results were achieved when

using the cross-correlation method:

• Looking at all tra�c types, the cross-correlation coe�cient was in the moderate

bracket for category A sensors. Similarly, when testing combinations of category B

sensors the correlation coe�cients calculated were also in the moderate bracket.

• Looking at TCP tra�c, the cross-correlation coe�cient for category A sensors was in

the strong bracket, while Category B sensor combinations remained in the moderate

bracket.

• Looking at UDP tra�c cross-correlation coe�cient results were mixed and uncate-

gorised.

• Looking at ICMP tra�c, cross-correlation coe�cient results showed relativity of

tra�c activity with a moderate to strong correlation bracket across all sensor com-

binations.

• Looking at tra�c without the in�uence of Con�cker (i.e. excluding 445/tcp), results

were signi�cantly improved when compared to all tra�c. Category A comparisons

were in the strong bracket and Category B comparisons were in the moderate cate-

gory.
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6.2 Project Objectives and Goals

The two main objectives of the research project were: (1) to comparatively analyse tra�c

observed by telescope sensors; and (2) to quantitatively investigate the correlation of

tra�c activity across the �ve telescope sensors. From these objectives, a number of

research goals were identi�ed and in this section the goals are revisited as follows:

• In comparatively analysing the similarities of tra�c, Chapter 4 used graphical

plots and basic statistics (means, median and standard deviation) to show relativity

of tra�c in each category of telescope sensors. The categorisation of sensors was

introduced in Section 3.2 following iterative analysis of where the sensors' IP pre�xes

were located (logically and physically) as well as the in�uence of the Con�cker worm.

The categorisation exercise formed part of an investigation into the di�erences in

tra�c observed by sensors and further highlighted the impact of legacy issues related

to the IP address assignment.

• In analysing the di�erent types of tra�c, TCP tra�c's dominance across category

A sensors was observed due to 445/tcp port tra�c. The in�uence of Con�cker

proved to be a main distinguishing element between category A and B sensors

due to Con�cker's inability to reach Category B sensors' IP range. Comparative

analysis of UDP tra�c, in Section 4.3, led to the discovery of a number of anomalous

uncoordinated tra�c spikes. ICMP tra�c analysis conducted in Section 4.4 showed

ICMP tra�c as uniform across all sensors.

• In using statistical methods to quantitatively analyse tra�c activity across all sen-

sors, Chapter 5 focused on the implementation of time series. Time series were

implemented to model tra�c activity represented over a period of time. The im-

plementation of the auto-correlation method showed that constructed time series

representing daily tra�c activity had no repeated patterns, however, hourly analy-

sis revealed evidence of 24-hour cycles.

The ful�llment of the each goal contributes towards the main project's objectives. The

research project has conducted comparative analysis by using basic statistics and sum-

marisation techniques. Additionally, comparative analyses of major tra�c types were

conducted separately. In concluding the analysis, the project focused on quantifying the

cross-correlation coe�cient to determine the correlation of tra�c activity in all the sensor

combinations.
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6.3 Future Work

Given the time limit imposed on research work, there are suggested areas of research that

would aid further correlation studies of network telescope tra�c activity. This research

project is based on datasets that were collected at Rhodes University and, as larger and

di�erent datasets become available, further experiments can be carried out.

6.3.1 Multivariate Time Series Correlation Analysis

The research project directed e�orts towards a univariate correlation analysis of time series

focusing mainly on the packet count variable. Using multivariate correlation analysis,

researchers would be able to conduct correlation analysis of tra�c activity using more than

one variable at a time. For example, researchers could examine the combination of daily

packet count variable with the average daily packet size to create a bivariate time series

and use multivariate analysis of time series to test for relativity in tra�c activity. This

would further enhance the research by examining the relationship of multiple variables.

6.3.2 Test Correlation with Additional Third Party Dataset

The research was conducted with �ve network telescope nodes spread across di�erent

network segments of the address range with a relatively logical distance. It would be

interesting to further support the results achieved by using datasets captured in other

regions or segments and conduct a correlation analysis of the same time period with the

datasets used in this research. Furthermore, it would be interesting to conduct similar

experiments on a larger network telescope or compare a larger network telescope's rel-

ativity with the small network telescope. Provided the periods under analysis are the

same, cross-correlation of di�erent sized telescope sensors could be conducted since the

time series of larger telescope sensor would simply have higher packet count variable.

6.3.3 Smoothing Techniques

Network telescope tra�c �ow, similar to many time-substantial time series such as the

economics series [8], are subjected to signi�cant amount of noise. As an extension to this

project, a technique of time series smoothing can be applied to extract the underlying



6.3. FUTURE WORK 83

trend. After analysing UDP tra�c, the researcher discovered a number of anomalous

spikes of tra�c and these were responsible for extreme packet counts that were uncoordi-

nated across all sensors. If one were to examine the time series with smoothing techniques,

one could investigate the correlation of tra�c activity with a smooth time series.

6.3.4 Automated Metrics and Dashboards for Analysis

Chapter 4 makes use of summarisation and basic statistical techniques to analyse tra�c

of the �ve datasets. Conducted experiments were iterative in nature and were based

on observations or trends of the initial results. The re�nement of experiments was also

employed to arrive at a set of plots and graphs used to compare the datasets. As an

extension, by using generated graphs and plots as a basis; there is an opportunity to

create dashboards and metrics that can be automatically generated to compare multiple

datasets. Readers are referred to the work in network telescope metrics showing that

standardised metrics can be used to share information among researchers [19].
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Appendix A

Overview of Basic Statistical Methods

Used

These appendices provide a brief description of the basic statistical methods that were

used for evaluating centrality, spread and correlation [30].

This appendices provides a brief description of basic statical methods that are used for

evaluating centrality, spread and correlation [30].

1. Mean , Median and Mode

(a) The sample mean is calculated by summing up the values observed and dividing

by the total number of the sample. The mean calculation is sensitive to outliers

and, therefore, extreme values can have impact on the mean. Given variable

(x) and (n) observations, Equation A.1 is the formula for sample mean.

x̄ =

∑
xi

n
(A.1)

(b) The median value is the middle value observed when sorting the numbers from

smallest to largest. If there is an even number of observations, the median is

the average of the two middle values on an ordered dataset.

2. Variance

(a) Sample variance is de�ned as the average squared deviations of values from

their sample mean.
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3. Standard deviation

(a) The standard deviation is a square root of the sample variance. This is the

average deviation from the mean. Equation A.2 shows the calculation of a

standard deviation given variable (x) with (n) observations.

sd(x) =

∑
(xi − x̄)2

n− 1
(A.2)



Appendix B

Packet Header Information

This section contains the table �elds for the relational database that were used as part of

the research. A high-level overview of the �elds used in this research is provided. For a

complete list, the reader is referred to the following RFCs[41] [40] [10].

Packets Table:

• datetime stamp: time stamp of the packet

• source IP: 32-bits source address

• destination IP: 32-bits destination address

• packet type: protocol identi�er

• size: packet size

• time to live: maximum time of the datagram in the Internet system

TCP Table:

• source port: 16-bit source port number

• destination port: 16-bit destination port number

• control bits:

� URG: Urgent Pointer �eld signi�cant
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� ACK: Acknowledgment �eld signi�cant

� PSH: Push Function

� SYN: Synchronise sequence number

UDP Table:

• source port: 16-bit source port number

• destination port: 16-bit destination port number

ICMP Table:

• type: identi�er for ICMP message type

• code: 0 = net unreachable; 1 = host unreachable; 2 = protocol unreachable; 3 =

port unreachable; 4 = fragmentation needed and DF set; 5 = source route failed.



Appendix C

Daily, Hourly and Monthly Packet

Counts

Figure C.1 shows the disparity of tra�c relativity between inter-category comparisons.

Sensors in category A (196-a, 196-b and 196-c) have similar peaks and troughs. Similarly,

category B sensors (146-a and 196-b) also shows similar peaks and troughs but these are

not as strongly correlated as compared to category A. There is a clear disjunction between

category A comparisons and category B comparisons.

Figure C.2 shows the hourly packet counts of all network telescope sensors. Higher packet

counts are observed in Category A sensors relative to Category B sensors.

Figure C.3 and C.4 show the monthly packet counts for category A and category B's

sensors respectively. The diagrams clearly demonstrate that monthly packet counts for

Figure C.1: Daily packet counts (category A vs. category B)
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Figure C.2: Hourly packet count (category A vs. category B)

Figure C.3: Monthly packet count of
telescope sensor 196-a, 196-b and 196-c
(category A)

Figure C.4: Monthly packet count of
telescope sensor 146-a, 155-a (category
B)

category A have similar peaks. Category B's monthly packet counts show a similar in-

creasing trend.



Appendix D

Auto-correlation Correlograms - All

Tra�c

Figure D.1, Figure D.2 and Figure D.3 show category A's auto-correlation correlograms

which demonstrates weak auto-correlation coe�cients. The correlograms show that most

coe�cients are closer or below the con�dence interval lines and, therefore, one cannot

reject the null hypothesis that the correlation is zero for values below the con�dence

intervals.

Figure D.1: Auto-correlation correlo-
gram for sensor 196-a using daily packet
count

Figure D.2: Auto-correlation correlo-
gram for sensor 196-b using daily packet
count
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Figure D.3: Auto-correlation correlogram for sensor 196-c using daily packet count



Appendix E

Hourly Auto-correlation Correlograms -

Port 445/tcp

The correlograms of category A comparisons showed evidence of repeating patterns when

looking at Con�cker related tra�c. Remaining category A correlograms (not included in

main body) are shown in this appendix.

E.1 Auto-correlation Correlograms for Sensors 196-b

and 196-c

Figure E.1 and Figure E.2 show auto-correlation correlograms for sensor 196-b and 196-

c respectively (category A). Both diagrams show strong auto-correlation coe�cients at

24-hourly cycles.

E.2 Correlogram Auto-correlation Coe�cients

As an example, auto-correlation coe�cients of Sensor 196-c are shown in Figure E.3.

The diagram shows distinct peaks, circled in red, at every 24-hour cycle. The strong

auto-correlation coe�cients are highlighted in yellow.
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Figure E.1: Auto-correlation correlogram for sensor 196-b using hourly packet count

Figure E.2: Auto-correlation correlogram for sensor 196-b using hourly packet count

Figure E.3: Auto-correlation coe�cients for sensor 196-c



Appendix F

Cross-correlation Correlograms - All

Tra�c

A number of correlograms were constructed to investigate the relationship between each

network telescope sensor's activity. Figures F.1 and Figure F.2 contain the combination

of correlograms for cross-correlation results looking at all tra�c.
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Cross-correlation correlogram of sensor
196-a vs. 196-b using daily packet

count

Cross-correlation correlogram of sensor
146-a vs. 196-b using daily packet

count

Cross-correlation correlogram of sensor
196-a vs. 146-a using daily packet count

Cross-correlation correlogram of sensor
196-a vs. 196-c using daily packet count

Figure F.1: Cross-correlation correlograms set A



102

Cross-correlation correlogram of sensor
196-a vs. 155-a using daily packet count

Cross-correlation correlogram of sensor
155-a vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
146-a vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
155-a vs. 196-b using daily packet

count

Figure F.2: Cross-correlation correlograms set B



Appendix G

Cross-correlation Correlograms - TCP

Tra�c

Figure G.1 and Figure G.2 show the cross-correlation correlograms of TCP tra�c. Higher

cross-correlation coe�cients were calculated across category A telescope sensors and, sim-

ilarly, the correlograms show a distinct peak at time lag 0.
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Cross-correlation correlogram of sensor
196-a vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
196-b vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
155-a vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
196-a vs. 155-a using daily packet count

Figure G.1: Cross-correlation correlograms using daily TCP packet count - set A
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Cross-correlation correlogram of sensor
146-a vs. 196-b using daily packet

count

Cross-correlation correlogram of sensor
146-a vs. 196-c using daily packet count

Cross-correlation correlogram of sensor
155-a vs. 196-b using daily packet

count

Cross-correlation correlogram of sensor
196-a vs. 146-a using daily packet count

Figure G.2: Cross-correlation correlograms using daily TCP packet count - set A



Appendix H

Packet Distribution Across Destination

IP

Figure H.1 shows the packet count as per destination IP of all �ve network telescope sen-

sors. Similar results have been obtained by researchers at Rhodes University [16]. Results

illustrate the reduced packet counts on tra�c outside Con�cker's reach. At destination IP

x.x.x.128 there is a sharp reduction on packet counts for category A sensors (196-a,196-b

and 196-c). This is marked with letter A on the diagram. Results also show that sensors

146-a and 155-a gradually see a reduction of packet counts in IP addresses greater than

x.x.x.128.

Figure H.1: Packet distribution across destination IP for all network telescope sensors
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Appendix I

Cross-correlation Correlograms - ICMP

Tra�c

Figure I.1 and Figure I.2 shows the cross-correlation correlograms for ICMP tra�c. A

peak at time lag 0 is observed with a gradual decline of cross-correlation coe�cients as

the lag increases.
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Cross-correlation correlogram of sensor
196-a vs. 146-a using daily ICMP

packet count

Cross-correlation correlogram of sensor
155-a vs. 196-c using daily ICMP

packet count

Cross-correlation correlogram of sensor
155-a vs. 196-b using daily ICMP

packet count

Cross-correlation correlogram of sensor
146-a vs. 196-c using daily ICMP

packet count

Figure I.1: Cross-correlation correlograms using ICMP tra�c - Set A
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Cross-correlation correlogram of sensor
146-a vs. 196-b using daily ICMP

packet count

Cross-correlation correlogram of sensor
155-a vs. 196-b using daily ICMP

packet count

Cross-correlation correlogram of sensor
196-a vs. 196-b using daily ICMP

packet count

Cross-correlation correlogram of sensor
196-b vs. 196-c using daily ICMP

packet count

Figure I.2: Cross-correlation correlograms using ICMP tra�c - Set B


